首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   35篇
  免费   1篇
  国内免费   1篇
化学   26篇
晶体学   1篇
力学   2篇
物理学   8篇
  2017年   1篇
  2015年   1篇
  2014年   2篇
  2013年   2篇
  2011年   1篇
  2010年   5篇
  2009年   2篇
  2008年   5篇
  2007年   3篇
  2006年   1篇
  2005年   9篇
  2004年   2篇
  2003年   2篇
  2002年   1篇
排序方式: 共有37条查询结果,搜索用时 15 毫秒
1.
《Electroanalysis》2006,18(11):1047-1054
We report the electropolymerization and characterization of polypyrrole films doped with poly(m‐aminobenzene sulfonic acid (PABS) functionalized single‐walled nanotubes (SWNT) (PPy/SWNT‐PABS). The negatively charged water‐soluble SWNT‐PABS served as anionic dopant during the electropolymerization to synthesize PPy/SWNT‐PABS composite films. The synthetic, morphological and electrical properties of PPy/SWNT‐PABS films and chloride doped polypyrrole (PPy/Cl) films were compared. Characterization was performed by cyclic voltammetry, atomic force microscopy (AFM), scanning electron microscopy (SEM) and Raman spectroscopy. SEM and AFM images revealed that the incorporation of SWNT‐PABS significantly altered the morphology of the PPy. Cyclic voltammetry showed improved electrochemical properties of PPy/SWNT‐PABS films as compared to PPy/Cl films. Raman Spectroscopy confirmed the presence of SWNT‐PABS within composite films. Field effect transistor (FET) and electrical characterization studies show that the incorporation of the SWNT‐PABS increased the electronic performance of PPy/SWNT‐PABS films when compared to PPy/Cl films. Finally, we fabricated PPy/SWNT‐PABS nanotubes which may lead to potential applications to sensors and other electronic devices.  相似文献   
2.
The effect of different concentrations of single‐walled carbon nanotubes (SWNTs) on the nonisothermal crystallization kinetics, morphology, and mechanical properties of polypropylene (PP) matrix composites obtained by melt compounding was investigated by means of X‐ray diffraction, differential scanning calorimetry, optical and scanning electron microscopy, and dynamic mechanical thermal analysis. Microscopy showed well‐dispersed nanotube ropes together with small and large aggregates. The modulus was found to increase by about 75% at a level of 0.5 wt % nanotubes. The SWNTs displayed a clear nucleating effect on the PP crystallization, favoring the α crystalline form rather than the β form. The crystallization kinetics analysis showed a significant increase in activation energy on incorporating nanotubes. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 2445–2453, 2005  相似文献   
3.
Abstract

X-ray diffraction (XRD) and electrical resistance measurement on single-walled carbon nan-otube (SWNT) samples prepared by the arc-discharge method are reported. The XRD profile of heat-treated sample indicated that air (oxygen, and/or nitrogen and/or water) can be condensed inside the SWNTs. We also found that the electrical resistance of SWNT soot is significantly affected by exposing to the oxygen gas and humid air.  相似文献   
4.
Nano-crystalline FeOOH particles(5~10 nm) have been uniformly mixed with electric matrix of single-walled carbon nanotubes(SWNTs)for forming FeOOH/SWNT composite via a facile ultrasonication method. Directly using the FeOOH/SWNT composite(containing 15 wt%SWNTs) as anode material for lithium battery enhances kinetics of the Li+insertion/extraction processes, thereby effectively improving reversible capacity and cycle performance, which delivers a high reversible capacity of 758 mAh g-1under a current density of 400 mA g-1even after 180 cycles, being comparable with previous reports in terms of electrochemical performance for FeOOH anode. The good electrochemical performance should be ascribed to the small particle size and nano-crystalline of FeOOH, as well as the good electronic conductivity of SWNT matrix.  相似文献   
5.
Nano-crystalline FeOOH particles(5~10 nm) have been uniformly mixed with electric matrix of single-walled carbon nanotubes(SWNTs)for forming FeOOH/SWNT composite via a facile ultrasonication method. Directly using the FeOOH/SWNT composite(containing 15 wt%SWNTs) as anode material for lithium battery enhances kinetics of the Li+insertion/extraction processes, thereby effectively improving reversible capacity and cycle performance, which delivers a high reversible capacity of 758 mAh g-1under a current density of 400 mA g-1even after 180 cycles, being comparable with previous reports in terms of electrochemical performance for FeOOH anode. The good electrochemical performance should be ascribed to the small particle size and nano-crystalline of FeOOH, as well as the good electronic conductivity of SWNT matrix.  相似文献   
6.
Single-walled carbon nanotubes (SWNTs) are used as supporting materials for palladium (Pd) nanoparticles generated in situ in ionic liquid (IL); Pd nanocatalysts on SWNTs exhibit superior reactivity for hydrogenation of aryl ketones in IL under mild conditions (1 atm of H2 (g) and room temperature) and can be reused above 10 times without any loss of catalytic activity.  相似文献   
7.
《Electroanalysis》2005,17(1):28-37
This paper reports the fabrication and the outstanding performance characteristics of novel microelectrodes consisting of tungsten (W) wires coated with homogeneous layers of single‐walled C nanotubes (SWNT). A series of studies using cyclic voltammetry indicate that the SWNT‐modified W electrodes possess interesting electrochemical features. In fact, they are able to catalyse electron transfer reactions involving a series of inorganic and biological molecules. These electrodes are characterized by a fast electron transfer, a wide working potential window, and a low background current. Moreover they demonstrate excellent reproducibility, good stability in various chemical media, and very high sensitivity towards a series of inorganic and organic compounds. The SWNT modified microelectrodes have been tested for the capacity to electrochemically detect ferrocene monocarboxylic acid and potassium hexacyanoferrate as well of a series of interesting biological molecules which include catechol, caffeic acid, DOPAC, ascorbic acid, L ‐tyrosine, acetaminophen, guanine, uric acid, and the neurotransmitters dopamine, epinephrine, and serotonin (5‐HT) hydrochloride. The advantages of the SWNT‐modified W electrodes are illustrated by comparing their analytical performance with that of conventional electrodes.  相似文献   
8.
Resasco  D.E.  Alvarez  W.E.  Pompeo  F.  Balzano  L.  Herrera  J.E.  Kitiyanan  B.  Borgna  A. 《Journal of nanoparticle research》2002,4(1-2):131-136
Existing single-walled carbon nanotube synthesis methods are not easily scalable, operate under severe conditions, and involve high capital and operating costs. The current cost of SWNT is exceedingly high. A catalytic method of synthesis has been developed that has shown potential advantages over the existing methods. This method is based on a catalyst formulation that inhibits the formation of undesired forms of carbon; it can be scaled-up and may result in lower production costs.  相似文献   
9.
As the sophistication of reactive force fields for molecular modeling continues to increase, their use and applicability has also expanded, sometimes beyond the scope of their original development. Reax Force Field (ReaxFF), for example, was originally developed to model chemical reactions, but is a promising candidate for modeling fracture because of its ability to treat covalent bond cleavage. Performing reliable simulations of a complex process like fracture, however, requires an understanding of the effects that various modeling parameters have on the behavior of the system. This work assesses the effects of time step size, thermostat algorithm and coupling coefficient, and strain rate on the fracture behavior of three carbon‐based materials: graphene, diamond, and a carbon nanotube. It is determined that the simulated stress‐strain behavior is relatively independent of the thermostat algorithm, so long as coupling coefficients are kept above a certain threshold. Likewise, the stress‐strain response of the materials was also independent of the strain rate, if it is kept below a maximum strain rate. Finally, the mechanical properties of the materials predicted by the Chenoweth C/H/O parameterization for ReaxFF are compared with literature values. Some deficiencies in the Chenoweth C/H/O parameterization for predicting mechanical properties of carbon materials are observed. © 2015 Wiley Periodicals, Inc.  相似文献   
10.
An atomic force microscope is used to study the effect of humidity on the interaction between carbon nanotubes anchored to atomic force microscopy tips and various samples. Commercial silicon tips were also used for comparison. Adhesion force and dissipative energy were measured between these tips and highly oriented pyrolytic graphite (HOPG) and PMMA in contact mode. The data provides a detailed understanding of carbon nanotube interactions as a function of humidity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号