首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   0篇
物理学   1篇
  1999年   1篇
排序方式: 共有1条查询结果,搜索用时 15 毫秒
1
1.
This paper considers sphericalOppenheimer-Snyder gravitational collapse of dust orperfect fluid stars immersed within aspacetime containing a thermal bath of (Gaussian) whitenoise at a temperature T, obeying the autocorrelations of thefluctation-dissipation theorem. Candidates for theresulting non-linear Einstein-Langevin (EL) stochasticdifferential field equations are developed. A collapsing fluid or dust star coupled to the stochastic,external thermal bath of fluctuations is theninterpreted as an example of a non-linear, noisy system,somewhat analogous to a non-linear Brownian motion in a viscous, thermal bath at temperature T. AnEinstein-Fokker-Planck (EFP) hydrodynamical continuityequation, describing the collapse as a probability flowwith respect to the exterior standard time ts outside the collapsing body, is developed. Thethermal equilibrium or stationary solution can bederived in the infinite standard time relaxation limit.This limit (ts ) only exists for a static, external observer within thenoise bath viewing the collapsing sphere such that R 1 (the event horizon) with unit probability asts . The stationary or thermalequilibrium solution of the efp equations therefore seemsto correspond to a static black hole in a Hartle-Hawkingstate at the Hawking temperature tH. The OSmodel first predicted event horizons and singularities. It is interesting that through a simplestochastic extension of the model, one can conclude thatthe final collapsed, static, equilibrium state of thebody must be a thermal black hole at the Hawkingtemperature.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号