首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
物理学   5篇
  2014年   1篇
  2013年   1篇
  2011年   1篇
  2010年   1篇
  2007年   1篇
排序方式: 共有5条查询结果,搜索用时 15 毫秒
1
1.
The paper investigates the non-linear behavior of semiconductor optical amplifier with Mach–Zehnder interferometer (SOA-MZI) configuration which makes it to work as a logic gate. The two designs of NOR gate based on SOA-MZI have been verified. The basic principal of both designs are same. The summation of data pulses have been taken and inverted to perform a NOR operation. In the design, the first 3 dB coupler creates a phase difference of π/2 in clock pulse and data pulse while passing through two interferometer arms. The clock and data pulses pass through SOA which attenuates the clock pulse wherever the data pulse is present. After passing through second 3 dB coupler a phase difference of π/2 is again created. Therefore, if the clock pulse is in the same phase will be added and if it is out of phase, will be canceled. The designs have been investigated at different bit-rates to achieve higher extinction ratio (ER), Q-factor and bit-error rate (BER) for different pump currents of SOA.  相似文献   
2.
The very fast running optical memory and optical logic gates are the basic building blocks for any optical computing data processing system. Realization of a very fast memory-cell in the optical domain is very challenging. In the last two decades many methods of implementing all-optical flip-flops have been proposed. Most of these suffer from speed limitation because of low switching response of the active devices. In our present communication the authors propose a method of developing a frequency encoded memory unit based on the switching action of semiconductor optical amplifier (SOA). Nonlinear polarization rotation characters of SOA and ‘SOA based Mach-Zehnder Interferometer’ switch, i.e. ‘SOA-MZI’ switch, are exploited for the purpose of some switching action with least switching power (<−3 dBm) and high switching contrast ratio (20 dB). Here two logic states (‘0’ state and ‘1’ state) of the memory is encoded by two different frequencies, which will remain unchanged throughout the data communication irrespective of loss of light energy due to reflection, refraction, attenuation, etc. Though the SOA based switch runs with the operational speed 100 Gb/s, still due to the presence of the other optical components in the memory unit, the overall speed of the proposed system will come down to 10 Gb/s.  相似文献   
3.
Surinder Singh  R.S. Kaler 《Optik》2007,118(8):261-394
Wavelength converter plays an important role for increasing the capacity and flexibility of future broadcast network. The cross phase modulation (XPM) based converter has high conversion efficiency at low input power. In order to improve the efficiency and wideband conversion range, the XPM is increase by optimizing the semiconductor optical amplifiers-Mach–Zehnder interferometer (SOA-MZI) configuration. The XPM is improved by increasing the active region length and bias current of the SOA.  相似文献   
4.
Abstract

We have simulated, for the first time, wavelength converter for future broadcast networks at 40 Gb/s using low-cost semiconductor optical amplifiers. The performance analysis is carried out for an all-optical frequency converter based on cross-phase modulation in two semiconductor optical amplifiers arranged in a Mach-Zehnder interferometer configuration to evaluate the efficiency of conversion. The results, evaluated analytically for input, return to zero signal at a bit rate of 40 Gb/s show that conversion is possible over a wavelength separation of 1 nm between the pump and the input wavelength. Increasing the driving current can decrease the cross-phase modulation effect. The cross gain modulation scheme shows extinction ratio degradation for conversion to longer wavelengths.  相似文献   
5.
Bijan Ghosh  Radha Raman Pal 《Optik》2011,122(20):1804-1807
Semiconductor optical amplifier (SOA) has already been established itself as a strong all-optical switching element for conducting super fast optical operations. Many all optical logic operations have been proposed by the use of SOA. Here in this paper the authors proposed a new method of implementing all-optical frequency encoded logic operations and half-adder by the use of SOA as well as Mach Zehnder interferometer. The advantage of frequency encoding has been strongly exploited here.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号