首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   28篇
  免费   3篇
  国内免费   6篇
化学   3篇
力学   9篇
综合类   1篇
数学   1篇
物理学   23篇
  2022年   2篇
  2021年   1篇
  2020年   1篇
  2018年   1篇
  2017年   1篇
  2016年   2篇
  2015年   2篇
  2014年   1篇
  2013年   6篇
  2011年   1篇
  2010年   2篇
  2007年   3篇
  2006年   1篇
  2005年   2篇
  2002年   2篇
  2001年   1篇
  2000年   3篇
  1999年   1篇
  1997年   1篇
  1995年   1篇
  1991年   1篇
  1985年   1篇
排序方式: 共有37条查询结果,搜索用时 0 毫秒
1.
对3种不同残奥(RA)含量的马氏体高强钢进行干滑动摩擦磨损试验, 研究RA含量对其磨损性能的影响. 利用扫描电镜、透射电镜、X射线衍射仪等对试验后的磨损表面及横截面显微组织进行表征. 结果表明, RA含量越高, 磨损表面越光滑, 摩擦系数和磨损率越小, 也即马氏体高强钢的耐磨性越好. 磨损引起的大应变使RA发生应变诱导马氏体相变, 导致硬度和硬化层厚度显著增大. RA含量最高的HT3试样的硬度提高了18.3%, 硬化层厚度达70μm. 相比RA含量低的试样, HT3试样表现出很好的耐磨性. 这是因为马氏体相变使硬度逐步增加, 抗裂纹萌生能力提高; 同时由于亚表面良好的韧性, 可延缓和阻止裂纹扩展, 使得点蚀和剥落不易形成. 因此, 要提高马氏体高强钢的耐磨性, 除了硬度要求外, 还需要考虑其亚表面韧性.  相似文献   
2.
In order to investigate the influence of shot peening on microstructure of laser hardened steel and clarify how much influence of initial microstructure induced by laser hardening treatment on final microstructure of laser hardened steel after shot peening treatment, measurements of retained austenite, measurements of microhardness and microstructural analysis were carried out on three typical areas including laser hardened area, transitional area and matrix area of laser hardened 17-4PH steel. The results showed that shot peening was an efficient cold working method to eliminate the retained austenite on the surface of laser hardened samples. The surface hardness increased dramatically when shot peening treatments were carried out. The analyses of microstructure of laser hardened 17-4PH after shot peening treatment were carried out in matrix area and laser hardened area via Voigt method. With the increasing peening intensity, the influence depth of shot peening on hardness and microstructure increased but the surface hardness and microstructure did not change when certain peening intensity was reached. Influence depth of shot peening on hardness was larger than influence depth of shot peening on microstructure due to the kinetic energy loss along the depth during shot peening treatment. From the microstructural result, it can be shown that the shot peening treatment can influence the domain size and microstrain of treated samples but laser hardening treatment can only influence the microstrain of treated samples.  相似文献   
3.
Fe—C—Cr—Mn亚稳奥氏体铸铁磨损表层的TEM观察   总被引:2,自引:1,他引:2  
用透射电镜观察了 Fe- C- Cr- Mn亚稳奥氏体基铸铁在 80 0 #Si C砂纸上经往复摩擦磨损试验后磨损表层的微观结构 .结果表明 :摩擦表层奥氏体基体的微观组织结构不均匀 ,有位错区、层错区、滑移区和ε-马氏体区 ;此外 ,还观察到了大量的奥氏体变体 ,沿其 [1 31 ]晶带轴旋转 2 5.35°可与基体 [1 1 2 ]晶带轴重合 ;在碳化物颗粒附近只观察到奥氏体变体和层错 .  相似文献   
4.
Ammonia-gas nitriding of AISI 304 austenitic stainless steel was studied at temperatures higher than 800 °C using SEM and X-ray diffraction. The result showed that S-phase, an expanded austenite, was formed even at such high temperatures due to a high nitriding potential of ammonia gas. The equilibrium phase, CrN was formed through a decomposition of S-layer in two different modes; the one was through continuous precipitation of particles at the surface-side of S-layer due to a higher nitriding potential; the other through a discontinuous(-like) precipitation at the austenite interface-side, producing a fine lamellar structure of austenite and CrN. The γ-phase in the surface-side resulting from the precipitation of CrN particles subsequently transformed into Fe4N because of a fast enrichment of N atoms and a limited mobility of Cr atoms at the surface-side. A coarse lamellar structure made of austenite and Cr2N was developed in front of fine lamellae composed of austenite and CrN by the decomposition of supersaturated austenite through a discontinuous precipitation via grain boundary movement.  相似文献   
5.
Abstract

The austenite microstructure evolution and softening processes have been studied in a 23Cr–6Ni–3Mo duplex stainless steel, comprising equal fractions of austenite and ferrite, deformed in uniaxial compression at 1000 °C using strain rates of 0.1 and 10 s?1. The texture and microstructure evolution within austenite was similar in character for both the strain rate used. The observed large-scale subdivision of austenite grains/islands into complex-shaped deformation bands, typically separated by relatively wide transition regions, has been attributed to the complex strain fields within this phase. Organised, self-screening microband arrays were locally present within austenite and displayed a crystallographic character for a wide range of austenite orientations. The microband boundaries were aligned with the traces of {1?1?1} slip planes containing slip systems having high, although not necessarily the highest possible, Schmid factors. The slightly lower mean intercept length and higher mean misorientation obtained for the sub-boundaries at the higher strain rate can be ascribed to the expected more restricted dynamic recovery processes compared to the low strain rate case. Dynamic recrystallisation within austenite was extremely limited and mainly occurred via the strain-induced migration of the distorted original twin boundaries, followed by the formation of multiple twinning chains.  相似文献   
6.
稀土奥贝蠕铁制取工艺及其性能的研究   总被引:1,自引:0,他引:1  
稀土奥贝蠕铁可用含稀土的蠕化剂及等温淬火工艺稳定地制取,藉助高温扫描电子显微镜,观察并研究了稀土蠕铁奥氏体化过程及稀土奥贝蠕铁随温度升高时组织的变化。用带有加热装置的万能材料试验等土奥贝蠕铁的各种性能进行了系统测定了如抗拉强度、延伸率、冲吉韧性、热膨胀系数及伸长百分率,结果表明,稀土奥贝蠕铁在室温和高温下均有良好的性能。  相似文献   
7.
Schaaf  Peter  Landry  Felix  Han  Meng  Carpene  Ettore  Lieb  Klaus-Peter 《Hyperfine Interactions》2002,139(1-4):307-314
Nitriding is a common method for improving the hardness, mechanical properties, wear and corrosion resistance of metals. Laser nitriding of metals is an efficient process, where the irradiation of surfaces in air or nitrogen atmospheres with short laser pulses leads to a fast take-up of nitrogen into the irradiated surfaces. This process has been extensively investigated for pure iron, but usually, no tools or functional parts are made of pure iron. Mainly steel or cast iron is used as a base material. Therefore, when looking for technical applicability, also the influence of alloying elements on the laser nitriding process is of great interest. Besides the pure iron various carbon steels and an austenitic stainless steel were studied in laser nitriding experiments in order to investigate the influence of the material itself. Here, the process is investigated via Conversion Electron and X-ray Mössbauer Spectroscopy (CEMS and CXMS), Resonant Nuclear Reaction Analysis (RNRA), and X-Ray Diffraction (XRD). It appears that carbon steels are even better suited for the laser nitriding process than pure iron, and the laser nitriding also works efficiently for the stainless steel which is normally difficult to be nitrided.  相似文献   
8.
9.
In this work a carbide-free bainitic steel was examined by a novel correlative microscopy approach using transmission Kikuchi diffraction (TKD) and transmission electron microscopy (TEM). The individual microstructural constituents could be identified by TKD based on their different crystal structure for bainitic ferrite and retained austenite and by image quality for the martensite–austenite (M–A) constituent. Subsequently, the same area was investigated in the TEM and a good match of these two techniques regarding the identification of the area position and crystal orientation could be proven. Additionally, the M–A constituent was examined in the TEM for the first time after preceded unambiguous identification using a correlative microscopy approach. The selected area diffraction pattern showed satellites around the main reflexes which might indicate a structural modulation.  相似文献   
10.
Summary The paper presents an analysis of the temperature field and phase transformation kinetics for cylindrical steel elements with arbitrary shaped cross sections. The influence of different cooling rates as well as different time intervals to achieve the half of the full austenite into pearlite transformation τ0.5 and weight fractions of pearlite and martensite are taken into account. The analysis is based on Lomakin's theory [2, 3, 4] and its modification [5] as well as the laws of phase transformation kinetics of [9]. The elaborated program of numerical calculations refers to steel grades characterized by C-shaped T-T-T curves and with carbon content close to that of an eutectoidal steel. The analysis is made for a two-dimensional region. As an example, a spline shaft with arbitrary shaped cross section is investigated. It is assumed that the heat exchange occurs on the boundary of the cross section alone. The solution of the problem is based on the variational difference method, being a combination of the finite element method and the finite difference method. Accepted for publication 6 August 1996  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号