首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   1篇
力学   1篇
物理学   7篇
  2009年   3篇
  2008年   4篇
  2006年   1篇
排序方式: 共有8条查询结果,搜索用时 15 毫秒
1
1.
We propose a new polarization sensitive optical time domain reflectometry (P-OTDR) setup assisted with a piezoelectric polarization controller (PPC). The input state of polarization can be changed by varying the voltage of PPC without any rotatable instrument, and only one optical receiver is used to detect the backward beam. We measure a single mode fibre and get the distribution of birefringence along the SMF.  相似文献   
2.
Doinikov AA  Haac JF  Dayton PA 《Ultrasonics》2009,49(2):269-1403
A general theoretical approach to the development of zero-thickness encapsulation models for contrast microbubbles is proposed. The approach describes a procedure that allows one to recast available rheological laws from the bulk form to a surface form which is used in a modified Rayleigh-Plesset equation governing the radial dynamics of a contrast microbubble. By the use of the proposed procedure, the testing of different rheological laws for encapsulation can be carried out. Challenges of existing shell models for lipid-encapsulated microbubbles, such as the dependence of shell parameters on the initial bubble radius and the “compression-only” behavior, are discussed. Analysis of the rheological behavior of lipid encapsulation is made by using experimental radius-time curves for lipid-coated microbubbles with radii in the range 1.2-2.5 μm. The curves were acquired for a research phospholipid-coated contrast agent insonified with a 20 cycle, 3.0 MHz, 100 kPa acoustic pulse. The fitting of the experimental data by a model which treats the shell as a viscoelastic solid gives the values of the shell surface viscosity increasing from 0.30 × 10−8 kg/s to 2.63 × 10−8 kg/s for the range of bubble radii, indicated above. The shell surface elastic modulus increases from 0.054 N/m to 0.37 N/m. It is proposed that this increase may be a result of the lipid coating possessing the properties of both a shear-thinning and a strain-softening material. We hypothesize that these complicated rheological properties do not allow the existing shell models to satisfactorily describe the dynamics of lipid encapsulation. In the existing shell models, the viscous and the elastic shell terms have the linear form which assumes that the viscous and the elastic stresses acting inside the lipid shell are proportional to the shell shear rate and the shell strain, respectively, with constant coefficients of proportionality. The analysis performed in the present paper suggests that a more general, nonlinear theory may be more appropriate. It is shown that the use of the nonlinear theory for shell viscosity allows one to model the “compression-only” behavior. As an example, the results of the simulation for a 2.03 μm radius bubble insonified with a 6 cycle, 1.8 MHz, 100 kPa acoustic pulse are given. These parameters correspond to the acoustic conditions under which the “compression-only” behavior was observed by de Jong et al. [Ultrasound Med. Biol. 33 (2007) 653-656]. It is also shown that the use of the Cross law for the modeling of the shear-thinning behavior of shell viscosity reduces the variance of experimentally estimated values of the shell viscosity and its dependence on the initial bubble radius.  相似文献   
3.
Three methods to measure qualitative and quantitative aspects of bone non-linearity were investigated in the context of diagnosis of bone “biomechanical health”: i.e. harmonic generation, parametric emission and parametric reception using phase modulation. Trabecular bone exhibited hysteretic non-linear behavior due to microcracks in bone tissue, and parametric reception using phase modulation seemed to be the best configuration for in vivo application. However, the relationship between level of non-linearity and crack density needs to be validated by histological analysis.  相似文献   
4.
The present study examines the association of the changes in ultrasound velocity measured at 1 MHz using 1.5 micros duration tone burst in the human soleus muscle in vivo with several pathologies including patients with chronic renal failure (CRF) and disorders of the cardiovascular system. Total 127 subjects were investigated, with approximately equal number of male and female subjects uniformly distributed by age, from 15 to 70 years old. Since molecular composition of the tissue is thought to have greater effect on the bulk ultrasound velocity, potential contribution of both water and fat, two main variable components of a muscle, were taken into account. Observed negative correlation of ultrasound velocity with the body mass index was considered a result of an elevated fat content. Based on the obtained data, presence of leg edemas results in a measurably lower ultrasound velocity in the soleus muscle. Unless patients had visibly detected leg edema, no difference between healthy individuals, patients with chronic heart failure, or CRF was found. Despite relatively high individual variations in velocity, ranging from 1530 to 1615 m/s, a statistically significant gender correlated difference between average values of the velocity was observed. No dependence of velocity on subject age was detected. An indirect confirmation of the muscle fluid homeostasis was revealed in patients with CRF undergoing hemodialysis procedure. After hemodialysis, a significantly smaller increase (0.3% in average) of ultrasound velocity in the soleus muscle was observed than otherwise could be expected if a uniform relative loss of total body fluids was assumed (1-1.3%). In general, the study findings set a premise for using ultrasound velocity as a potential quantitative parameter for edema assessment.  相似文献   
5.
F.G. Mitri 《Annals of Physics》2008,323(11):2840-2850
The exact analytical solution for the scattering of a generalized (or “hollow”) acoustic Bessel beam in water by an elastic sphere centered on the beam is presented. The far-field acoustic scattering field is expressed as a partial wave series involving the scattering angle relative to the beam axis and the half-conical angle of the wave vector components of the generalized Bessel beam. The sphere is assumed to have isotropic elastic material properties so that the nth partial wave amplitude for plane wave scattering is proportional to a known partial-wave coefficient. The transverse acoustic scattering field is investigated versus the dimensionless parameter ka(k is the wave vector, a radius of the sphere) as well as the polar angle θ for a specific dimensionless frequency and half-cone angle β. For higher-order generalized beams, the acoustic scattering vanishes in the backward (θ = π) and forward (θ = 0) directions along the beam axis. Moreover it is possible to suppress the excitation of certain resonances of an elastic sphere by appropriate selection of the generalized Bessel beam parameters.  相似文献   
6.
The paper presents and evaluates a speckle detection method for B-scan images. This is a fully automatic method and does not require information about the sensor parameters, which is often missing in retrospective studies.The characterization and posterior detection of speckle noise in ultrasound (US) has been regarded as an important research topic in US imaging, for improving signal-to-noise ratio by removing speckle noise and for exploiting speckle correlation information. Most of the existing methods require either manual intervention, the need to know sensor parameters or are based on statistical models which often do not generalize well to B-scans of different imaging areas. The proposed method aims to overcome those limitations.The main novelty of this work is to show that speckle detection can be improved based on finding optimally discriminant low order speckle statistics. In addition, and in contrast with other approaches the presented method is fully automatic and can be efficiently implemented to B-scan images.The method detects speckle patches using an ellipsoid discriminant function which classifies patches based on features extracted from optimally discriminant low order moments of the uncompressed intensity B-scan information. In addition, if the uncompressed signal is not available, we propose and evaluate a method for the estimation of this factor.The computation of low order moments using an optimality criteria, the decompression factor estimation and other key aspects of the method are quantitatively evaluated using both simulated and real (phantom and in vivo) data. Speckle detection results are obtained using again phantom and in vivo studies which show the validity of our approach. In addition, speckle probability images (SPI) are presented which provide valuable information about the distribution of speckle and non-speckle areas in an image.The presented evaluation and results show the effectiveness of our approach. In particular, the need for using discriminant analysis to determine the optimal discriminant power of the statistical moments and that this optimal value strongly depends on the characteristics and imaged tissues in the B-scan data.  相似文献   
7.
Doinikov AA  Zhao S  Dayton PA 《Ultrasonics》2009,49(2):195-6967
In ultrasonic targeted imaging, specially designed encapsulated microbubbles are used, which are capable of selectively adhering to the target site in the body. A challenging problem is to distinguish the echoes from such adherent agents from echoes produced by freely circulating agents. In the present paper, an equation of radial oscillation for an encapsulated bubble near a plane rigid wall is derived. The equation is then used to simulate the echo from a layer of contrast agents localized on a wall. The echo spectrum of adherent microbubbles is compared to that of free, randomly distributed microbubbles inside a vessel, in order to examine differences between the acoustic responses of free and adherent agents. It is shown that the fundamental spectral component of adherent bubbles is perceptibly stronger than that of free bubbles. This increase is accounted for by a more coherent summation of echoes from adherent agents and the acoustic interaction between the agents and the wall. For cases tested, the increase of the fundamental component caused by the above two effects is on the order of 8-9 dB. Bubble aggregates, which are observed experimentally to form near a wall due to secondary Bjerknes forces, increase the intensity of the fundamental component only if they are formed by bubbles whose radii are well below the resonant radius. If the formation of aggregates contributes to the growth of the fundamental component, the increase can exceed 17 dB. Statistical analysis for the comparison between adhering and free bubbles, performed over random space bubble distributions, gives p-values much smaller than 0.05.  相似文献   
8.
Doinikov AA  Haac JF  Dayton PA 《Ultrasonics》2009,49(2):263-1403
Knowledge of resonant frequencies of contrast microbubbles is important for the optimization of ultrasound contrast imaging and therapeutic techniques. To date, however, there are estimates of resonance frequencies of contrast microbubbles only for the regime of linear oscillation. The present paper proposes an approach for evaluating resonance frequencies of contrast agent microbubbles in the regime of nonlinear oscillation. The approach is based on the calculation of the time-averaged oscillation power of the radial bubble oscillation. The proposed procedure was verified for free bubbles in the frequency range 1-4 MHz and then applied to lipid-shelled microbubbles insonified with a single 20-cycle acoustic pulse at two values of the acoustic pressure amplitude, 100 kPa and 200 kPa, and at four frequencies: 1.5, 2.0, 2.5, and 3.0 MHz. It is shown that, as the acoustic pressure amplitude is increased, the resonance frequency of a lipid-shelled microbubble tends to decrease in comparison with its linear resonance frequency. Analysis of existing shell models reveals that models that treat the lipid shell as a linear viscoelastic solid appear may be challenged to provide the observed tendency in the behavior of the resonance frequency at increasing acoustic pressure. The conclusion is drawn that the further development of shell models could be improved by the consideration of nonlinear rheological laws.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号