首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   1篇
物理学   4篇
  2011年   1篇
  2006年   2篇
  2003年   1篇
排序方式: 共有4条查询结果,搜索用时 125 毫秒
1
1.
A 9 μm cutoff 640 × 512 pixel hand-held quantum well infrared photodetector (QWIP) camera has been demonstrated with excellent imagery. A noise equivalent differential temperature (NEDT) of 10.6 mK is expected at a 65 K operating temperature with f/2 optics at a 300 K background. This focal plane array has shown background limited performance at a 72 K operating temperature with the same optics and background conditions. In this paper, we discuss the development of this very sensitive long-wavelength infrared camera based on a GaAs/AlGaAs QWIP focal plane array and its performance in quantum efficiency, NEDT, uniformity, and operability. In the second section of this paper, we discuss the first demonstration of a monolithic spatially separated four-band 640 × 512 pixel QWIP focal plane array and its performance. The four spectral bands cover 4–5.5, 8.5–10, 10–12, and 13.5–15 μm spectral regions with 640 × 128 pixels in each band. In the last section, we discuss the array performance of a 640 × 512 pixel broad-band (10–16 μm full-width at half-maximum) QWIP focal plane.  相似文献   
2.
A modulation doped thyristor concept is described for LWIR photodetection based upon intersubband bound to continuum absorption. The intersubband absorption generates photocurrent from undoped quantum wells to modulation doped layers (MDL). Due to the lower dark current compared to conventional quantum well infrared photodetectors (QWIPs), the thyristor infrared detector operates with little or no cooling and with similar or better performance than QWIPs at low temperatures. The operating characteristics of absorption coefficient, quantum efficiency, responsivity, detectivity, infrared gain, and dark current are determined as a function of thyristor voltage and input power level in the range of 1 μW/cm2.  相似文献   
3.
Hitherto, two families of multielement infrared (IR) detectors are used for principal military and civilian infrared applications; one is used for scanning systems (first generation) and the other is used for staring systems (second generation). Third generation systems are being developed nowadays. In the common understanding, third generation IR systems provide enhanced capabilities like larger number of pixels, higher frame rates, better thermal resolution as well as multicolour functionality and other on-chip functions. In the paper, issues associated with the development and exploitation of materials used in fabrication of third generation infrared photon detectors are discussed. In this class of detectors two main competitors, HgCdTe photodiodes and quantum well IR photoconductors (QWIPs) are considered. The performance figures of merit of state-of-the-art HgCdTe and QWIP focal plane arrays (FPAs) are similar because the main limitations come from the readout circuits. However, the metallurgical issues of the epitaxial layers such as uniformity and number of defected elements are the serious problems in the case of long wavelength infrared (LWIR) and very LWIR (VLWIR) HgCdTe FPAs. It is predicted that superlattice based InAs/GaInSb system grown on GaSb substrate seems to be an attractive to HgCdTe with good spatial uniformity and an ability to span cutoff wavelength from 3 to 25 μm.  相似文献   
4.
甚长波量子阱红外探测器光栅耦合的研究   总被引:3,自引:0,他引:3       下载免费PDF全文
熊大元  曾勇  李宁  陆卫 《物理学报》2006,55(7):3642-3648
采用平面波展开的散射矩阵方法研究n型甚长波量子阱红外探测器的二维衍射光栅,并同时从实验方面研究了其红外透射光谱.研究表明,n型量子阱器件的光栅耦合是传输场和倏逝场共同作用的结果.对于n型量子阱红外探测器的光栅耦合,光栅周期、光栅深度和占空比三者之间相互影响;要达到好的光学耦合效果,需要根据量子阱器件的峰值探测波长选择合适的光栅参数. 关键词: n型量子阱红外探测器 二维光栅 光耦合  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号