首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   336篇
  免费   2篇
  国内免费   5篇
化学   16篇
力学   42篇
数学   7篇
物理学   278篇
  2022年   2篇
  2021年   2篇
  2020年   5篇
  2019年   41篇
  2018年   11篇
  2017年   3篇
  2016年   15篇
  2015年   2篇
  2014年   2篇
  2013年   81篇
  2012年   2篇
  2011年   14篇
  2010年   4篇
  2009年   46篇
  2008年   9篇
  2007年   23篇
  2006年   5篇
  2005年   51篇
  2004年   1篇
  2003年   1篇
  2002年   3篇
  2001年   3篇
  2000年   4篇
  1999年   1篇
  1997年   2篇
  1996年   1篇
  1995年   1篇
  1993年   2篇
  1989年   2篇
  1984年   1篇
  1983年   1篇
  1968年   2篇
排序方式: 共有343条查询结果,搜索用时 234 毫秒
1.
2.
Summary The selectivities of two flame-based ionization detectors identified as a Remote FID (RFID) and a Flame Thermionic Ionization Detector (FTID) have been improved by introducing methane as a fuel for the flame. Both the RFID and FTID feature a detector struture in which the ionization polarizer and collector are located several centimeters downstream of an oxygen-rich flame, rather than immediately adjacent to the flame as in a flame ionization detector. The RFID detects long-lived negative ions produced in the flame by the combustion of lead, tin, phosphorus, or silicon compounds. The FTID re-ionizes and detects neutral electronegative products generated by combustion of nitrogen, halogen, or phosphorus compounds. An organic-fuelled RFID can detect 1 pg Pb (Sn, P)/sec with a selectivity of the order of 106 versus hydrocarbons. An organic fuelled FTID is applicable to detection of compounds at nanogram and higher levels. FTID selectivity for PCB compounds in a transformer oil matrix is of the order of 1051. The improved selectivity achieved by using an organic-fuelled flame is also applicable to the detection of phospholipid and other non-volatile N, P, or Cl compounds using an FID/FTID detector accessory for a TLC/FID analyser.  相似文献   
3.
Flame shape is an important observed characteristic of flames that can be used to scale flame properties such as heat release rates and radiation. Flame shape is affected by fuel type, oxygen levels in the oxidiser, inverse burning and gravity. The objective of this study is to understand the effect of high oxygen concentrations, inverse burning, and gravity on the predictions of flame shapes. Flame shapes are obtained from recent analytical models and compared with experimental data for a number of inverse and normal ethane flame configurations with varying oxygen concentrations in the oxidiser and under earth gravity and microgravity conditions. The Roper flame shape model was extended to predict the complete flame shapes of laminar gas jet normal and inverse diffusion flames on round burners. The Spalding model was extended to inverse diffusion flames. The results show that the extended Roper model results in reasonable predictions for all microgravity and earth gravity flames except for enhanced oxygen normal diffusion flames under earth gravity conditions. The results also show trends towards cooler flames in microgravity that are in line with past experimental observations. Some key characteristics of the predicted flame shapes and parameters needed to describe the flame shape using the extended Roper model are discussed.  相似文献   
4.
5.
Two key flame macrostructures in swirling flows have been observed in experiments of oxy-combustion (as well as air-combustion); as the equivalence ratio is raised, the flame moves from being stabilized on just the inner shear layer (Flame III) to getting stabilized on both the inner and outer shear layers (Flame IV). We report results of an LES investigation of two different inlet oxy-fuel mixtures, in a turbulent swirling flow at Re=20,000, that capture these two macrostructures. Previous work on the effects of heat loss have mostly focused on its impact on macro-scale observations. In this paper, we examine how heat loss impacts the flame microstructures as well for these two macrostructures. For both flames, the flamelet structure, as represented by a scatter plot of the normalized fuel concentration against the normalized temperature, depends on whether the combustor walls are adiabatic or non-adiabatic. For the adiabatic case, the flamelets of both macrostructures behave like strained flames. When wall heat transfer is included, Flame III microstructure is more bimodal. Since this flame extends farther downstream and part of it propagates along the walls, heat transfer has a greater impact on it’s microstructure. These results show that heat loss impacts not just the macro properties of the flame such as its shape or interactions with the wall, but also fundamentally changes its internal structure. Scatter plots of the turbulent flames are constructed and compared to different 1D laminar flame profiles (e.g., strained or with heat loss), and comparisons suggest the important role of the wall thermal boundary conditions in the accurate simulations of combustion dynamics and interpretations of experimental data, including data reduction and scaling.  相似文献   
6.
人教版初中化学首个探究性实验"蜡烛及其燃烧"明确指出火焰的划分方法,但在实际教学中肉眼观察法和火柴梗燃烧法对蜡烛火焰的划分存在一定的局限性。采用文献研究法和实验验证法分析其局限性的成因——燃料的析炭能力强弱、材料结构的不同等,并提出相应的改进建议。  相似文献   
7.
In this paper we consider an ignition-temperature zero-order reaction model of thermo-diffusive combustion. This model describes the dynamics of thick flames, which have recently received considerable attention in the physical and engineering literature. The model admits a unique (up to translations) planar travelling wave solution. This travelling wave solution is quite different from those usually studied in combustion theory. The main qualitative feature of this travelling wave is that it has two interfaces: the ignition interface where the ignition temperature is attained and the trailing interface where the concentration of deficient reactants reaches zero. We give a new mathematical framework for studying the cellular instability of such travelling front solutions. Our approach allows the analysis of a free boundary problem to be converted into the analysis of a boundary value problem having a fully nonlinear system of parabolic equations. The latter is very suitable for both mathematical and numerical analysis. We prove the existence of a critical Lewis number such that the travelling wave solution is stable for values of Lewis number below the critical one and is unstable for Lewis numbers that exceed this critical value. Finally, we discuss the results of numerical simulations of a fully nonlinear system that describes the perturbation dynamics of planar fronts. These simulations reveal, in particular, some very interesting ‘two-cell’ steady patterns of curved combustion fronts.  相似文献   
8.
9.
La2O3对钛合金表面镍基喷焊涂层组织和性能的影响   总被引:4,自引:0,他引:4  
采用火焰喷焊技术在钛合金基体上制备了不加La2O3和加4%(质量分数)La2O3两种镍基涂层,分析了它们的显微组织、合金元素的扩散、显微硬度以及耐磨性能。结果表明:La2O3的加人,改善了涂层合金的流动性和显微组织的均匀性,并使涂层与基体的熔合更加明显,结合性能得到进一步提高;虽然一定程度上减弱了基体Ti元素对喷焊层的强化作用,使表层显微硬度略有下降,但磨损失重却较未加La2O3的喷焊涂层下降了20%。  相似文献   
10.
Spectral optical techniques are combined to characterise the distribution of large-molecule soot precursors, nanoparticles of organic carbon, and soot in two turbulent non-premixed ethylene flames with differing residence times. Laser-induced fluorescence, laser-induced incandescence and light scattering are used to define distributions across the particle size distribution. From the scattering and laser-induced emission measurements it appears that two classes of particles are formed. The first ones are preferentially formed in the fuel-rich region of the flame closer to the nozzle, have sizes of the order of few nanometers but are not fully solid particles, because the constituent molecules still maintain their individual identity exhibiting strong broadband fluorescence in the UV. The second class of particles constituted by solid particles, with sizes of the order of tens of nanometers are able to absorb a sufficient number of photons to be heated to incandescent temperatures. These larger particles are formed at larger residence times in the flame since they are the result of slow growth processes such as coagulation or carbonization. The flames are also modeled in order to produce mixture fraction maps. A new discovery is that nanoparticles of organic carbon concentration, unlike soot, does correlate well with mixture fraction, independent of position in the flame. This is likely to be a significant benefit to future modelling of soot inception processes in turbulent non-premixed flames.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号