全文获取类型
收费全文 | 341篇 |
免费 | 1篇 |
国内免费 | 5篇 |
专业分类
化学 | 16篇 |
力学 | 42篇 |
数学 | 7篇 |
物理学 | 282篇 |
出版年
2022年 | 2篇 |
2021年 | 2篇 |
2020年 | 6篇 |
2019年 | 41篇 |
2018年 | 11篇 |
2017年 | 3篇 |
2016年 | 15篇 |
2015年 | 2篇 |
2014年 | 2篇 |
2013年 | 81篇 |
2012年 | 4篇 |
2011年 | 14篇 |
2010年 | 4篇 |
2009年 | 46篇 |
2008年 | 9篇 |
2007年 | 23篇 |
2006年 | 5篇 |
2005年 | 51篇 |
2004年 | 1篇 |
2003年 | 1篇 |
2002年 | 4篇 |
2001年 | 3篇 |
2000年 | 4篇 |
1999年 | 1篇 |
1997年 | 2篇 |
1996年 | 1篇 |
1995年 | 1篇 |
1993年 | 2篇 |
1989年 | 2篇 |
1984年 | 1篇 |
1983年 | 1篇 |
1968年 | 2篇 |
排序方式: 共有347条查询结果,搜索用时 15 毫秒
1.
2.
With a view to measuring the structure coefficient of refractive index fluctuations in a turbulent premixed butane-air flame, a thin laser beam is sent into the flame perpendicular to the flow direction. The laser beam generally undergoes fluctuations of direction, phase, and amplitude. Only the random deflections of the laser beam may be taken into account. After having traversed the flame, the perturbed laser beam enters into an interferometric system. Materials and experimental procedure are described. In the unperturbed interference pattern, the zones only sensitive to fluctuations of the angle-of-arrival of the laser beam are detected. From the random displacements of the central bright fringe, the structure coefficient of refractive index fluctuations in the flame is measured. To prove that the method of measurement is satisfactory, the result obtained is applied for computing the power spectral density of the angle-of-arrival of the laser beam from the formula of correlations of the laser beam deflection angles which we have demonstrated in previous works. This computed power spectral density is compared to that measured from the effective position of the detector. A good agreement is observed between the two results. 相似文献
3.
B. Fiorina O. Gicquel L. Vervisch S. Carpentier N. Darabiha 《Proceedings of the Combustion Institute》2005,30(1):867-874
Tabulated chemistry and presumed probability density function (PDF) approaches are combined to perform RANS modeling of premixed turbulent combustion. The chemistry is tabulated from premixed flamelets with three independent parameters: the equivalence ratio of the mixture, the progress of reaction, and the specific enthalpy, to account for heat losses at walls. Mean quantities are estimated from presumed PDFs. This approach is used to numerically predict a turbulent premixed flame diluted by hot burnt products at an equivalence ratio that differs from the main stream of reactants. The investigated flame, subjected to high velocity fluctuations, has a thickened-wrinkled structure. A recently proposed closure for scalar dissipation rate that includes an estimation of the coupling between flame wrinkling and micromixing is retained. Comparisons of simulations with experimental measurements of mean velocity, temperature, and reactants are performed. 相似文献
4.
Driss Laraqui Olivier Allgaier Cornelius Schönnenbeck Gontrand Leyssens Jean-François Brilhac Ricardo Lomba Clément Dumand Olivier Guézet 《Proceedings of the Combustion Institute》2019,37(3):3175-3184
This work presents a study of a magnesium/air combustion process in the context of innovative zero carbon dioxide (CO2) energy carriers for reducing global warming effects. In order to analyze more deeply the confined combustion of magnesium under fluctuating overpressure conditions (0 to 24 hPa) and the generated gaseous by-products, magnesium/air flames have been realized in a combustion chamber with a conical bluff-body as flame holder and different contraction ratios diaphragms at the exit duct. Sieved magnesium samples with two size-fractions were tested: 20–50?µm and 50–70?µm. The gaseous emissions of nitrogen oxides (NOx) and dioxygen (O2) were analyzed with on-line infrared, ultraviolet and paramagnetic analyzers. A flame pulsating behavior was clearly observed from light emission intensity (monitored by a photodiode) and pressure fluctuations (monitored by a pressure sensor); the frequencies obtained ranged between 3 and 10?Hz. The frequency of the pulsation exhibited strong dependence on the geometric configuration of the chamber: a contraction diaphragm divided by two the frequency level of the fluctuations in the studied range of maximum overpressure. Such fluctuations may probably be the consequence of periodic perturbations of the recirculation zone behind the bluff-body. These periodic perturbations are themselves caused by strong periodic overpressure variations due to stiff contraction downstream responding to gas velocity fluctuations. This feed-back-loop mechanism was considered in this study. NOx emissions produced through the thermal pathway were analyzed for equivalence ratios ranging from 0.29 to 1. The representation of NOx versus equivalence ratio exhibited a parabolic shape with a maximum for an equivalence ratio of 0.4. Moreover, NOx emissions of this metal combustor have shown a similar order of magnitude than current internal combustion engines. 相似文献
5.
The propagation of premixed laminar flame in ducts of circular cross-section considering a thermal-diffusive model is investigated numerically. Heat losses by conduction to the channels walls are taken into account using the thermally thin wall regime. The effects and the relationship between thickness and diameter of the tube with the flame speed propagation are studied and the quenching condition is obtained as a function of the heat-loss parameter. The mathematical model employs the axisymmetric energy and species equations. The calculations are based on a two-step chemistry, with an Arrhenius, energetically neutral, radical production reaction followed by an exothermic radical recombination reaction. For large values of the heat-loss parameter, the wall temperature is close to the free stream temperature and all the heat losses through the wall are convected away. No heat feedback occurs. On the other hand, for small values of the heat-loss parameter, a feedback mechanism occurs by transferring heat from the burned gas to the fresh mixture along the tube wall. For values of the heat-loss parameter of order unity, the heat feedback mechanism is able to sustain the flame propagation and the quenching condition disappears, producing an almost planar flame front as the propagation velocity reduces. For this two-step reaction mechanism, the radical species behaviour at the duct walls seems to have negligible effect on the quenching process. 相似文献
6.
Turbulent piloted Bunsen flames of stoichiometric methane–air mixtures are computed using the large eddy simulation (LES) paradigm involving an algebraic closure for the filtered reaction rate. This closure involves the filtered scalar dissipation rate of a reaction progress variable. The model for this dissipation rate involves a parameter βc representing the flame front curvature effects induced by turbulence, chemical reactions, molecular dissipation, and their interactions at the sub-grid level, suggesting that this parameter may vary with filter width or be a scale-dependent. Thus, it would be ideal to evaluate this parameter dynamically by LES. A procedure for this evaluation is discussed and assessed using direct numerical simulation (DNS) data and LES calculations. The probability density functions of βc obtained from the DNS and LES calculations are very similar when the turbulent Reynolds number is sufficiently large and when the filter width normalised by the laminar flame thermal thickness is larger than unity. Results obtained using a constant (static) value for this parameter are also used for comparative evaluation. Detailed discussion presented in this paper suggests that the dynamic procedure works well and physical insights and reasonings are provided to explain the observed behaviour. 相似文献
7.
Edges of diffusion flames in a counterflow burner are examined numerically for Lewis greater than unity. When the speed of propagation is plotted against Damköhler for a range of Lewis a fold bifurcation is observed. It is shown that there exist stable positively and negatively propagating edges for some Damköhler and Lewis number pairs. It is further shown that changed local conditions can lead to a transition from positive (advancing into the unburnt gasses) to negative (receding) propagation. 相似文献
8.
Denis Veynante Benoît Fiorina Pascale Domingo Luc Vervisch 《Combustion Theory and Modelling》2013,17(6):1055-1088
Detailed chemical mechanisms have to be incorporated in turbulent combustion modelling to predict flame propagation, ignition, extinction or pollutant formation. Unfortunately, hundreds of species and thousands of elementary reactions are involved in hydrocarbon chemical schemes and cannot be handled in practical simulations, because of the related computational costs and the need to model the complexity of their interaction with turbulent motions. Detailed chemistry may be handled using look-up tables, where chemical parameters such as reaction rates and/or species mass fractions are determined from a reduced set of coordinates, progress variables or mixture fractions, as proposed in ILDM, FPI or FGM methods. Nevertheless, these tables may require large computer memory spaces and non-negligible access times. This issue becomes of crucial importance when running on massively parallel computers: to implement these databases in shared memories would induce a large number of data exchanges, reducing the overall code performance; on the other hand duplicating databases in every local processor memory may become impossible either for large databases or small local memories. This work proposes to take advantage of the self-similar behaviour of turbulent premixed flames to reduce the size of these chemical databases, specifically when running on massively parallel machines, under the FPI (Flame Prolongation of ILDM) framework. Several approaches to reduce the database are investigated and discussed both in terms of memory requirements and access times. A very good compromise is obtained for methane–air turbulent premixed flames, where the size of the database is decreased by a factor of 1000, while the access time is reduced by about 60%. 相似文献
9.
Arndt Joedicke Norbert Peters Mohy Mansour 《Proceedings of the Combustion Institute》2005,30(1):901-909
The structure and stabilization mechanism of turbulent lifted non-premixed hydrocarbon flames have been investigated using combined laser imaging techniques. The techniques include Rayleigh scattering, laser induced predissociation fluorescence of OH, LIF of PAH, LIF of CH2O, and planar imaging velocimetry. The geometrical structure of multi-reaction zones and flow field at the stabilization region have been simultaneously measured in 16 hydrocarbon flames. The data reveal the existence of triple flame structure at the stabilization region of turbulent lifted flames. Increasing the jet velocity leads to an increase of the lift-off height and to a broadening of the lift-off region. Further analysis of the stabilization criterion at the lift-off height based on the premixed nature of triple-flame propagation and flow field data has been presented and discussed. 相似文献
10.
Level-set G-equation and stationary flamelet chemistry are used in large eddy simulation of a propane/air premixed turbulent flame stabilized by a bluff body. The aim was to study the interaction between the flame front and turbulent eddies, and in particular to examine the effect of sub-grid scale (SGS) eddies on the wrinkling of the flame surface. The results indicated that the two types of turbulence eddies—the resolved large scale eddies and the unresolved SGS eddies—have different effects on the flame. The fluctuation of the flame surface, which is responsible for the broadening of the time averaged mean flame brush by turbulence, depends on the large resolved turbulence eddies. Time averaged mean flow velocity, temperature, and major species concentrations mainly depend on the large scale resolved eddies. The unresolved SGS eddies contribute to the wrinkling at the SGS level and play an important role in the enhancement of the propagation speed of the resolved flame front. In addition, the spatially filtered intermediate species, such as radicals, and the spatially filtered reaction rates strongly depend on the small SGS eddies. The asymptotic behavior of flame wrinkling by the SGS eddies, with respect to the decrease in filter size and grid size, is investigated further using a simplified level-set equation in a model shear flow. It is shown that to minimize the influence of the SGS eddies, fine grid and filter size may have to be used. 相似文献