首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17693篇
  免费   3776篇
  国内免费   2010篇
化学   12653篇
晶体学   190篇
力学   1767篇
综合类   126篇
数学   1430篇
物理学   7313篇
  2024年   52篇
  2023年   231篇
  2022年   382篇
  2021年   546篇
  2020年   761篇
  2019年   640篇
  2018年   558篇
  2017年   640篇
  2016年   1010篇
  2015年   967篇
  2014年   1181篇
  2013年   1674篇
  2012年   1254篇
  2011年   1317篇
  2010年   1124篇
  2009年   1228篇
  2008年   1247篇
  2007年   1325篇
  2006年   1108篇
  2005年   1009篇
  2004年   882篇
  2003年   739篇
  2002年   532篇
  2001年   430篇
  2000年   436篇
  1999年   366篇
  1998年   300篇
  1997年   241篇
  1996年   172篇
  1995年   164篇
  1994年   130篇
  1993年   104篇
  1992年   85篇
  1991年   84篇
  1990年   65篇
  1989年   50篇
  1988年   66篇
  1987年   49篇
  1986年   44篇
  1985年   50篇
  1984年   38篇
  1983年   14篇
  1982年   36篇
  1981年   28篇
  1980年   23篇
  1979年   24篇
  1978年   13篇
  1977年   15篇
  1974年   8篇
  1973年   10篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
1.
Nitrene transfer reactions have emerged as one of the most powerful and versatile ways to insert an amine function to various kinds of hydrocarbon substrates. However, the mechanisms of nitrene generation have not been studied in depth albeit their formation is taken for granted in most cases without definitive evidence of their occurrence. In the present work, we compare the generation of tosylimido iron species and NTs transfer from FeII and FeIII precursors where the metal is embedded in a tetracarbene macrocycle. Catalytic nitrene transfer to reference substrates (thioanisole, styrene, ethylbenzene and cyclohexane) revealed that the same active species was at play, irrespective of the ferrous versus ferric nature of the precursor. Through combination of spectroscopic (UV-visible, Mössbauer), ESI-MS and DFT studies, an FeIV tosylimido species was identified as the catalytically active species and was characterized spectroscopically and computationally. Whereas its formation from the FeII precursor was expected by a two-electron oxidative addition, its formation from an FeIII precursor was unprecedented. Thanks to a combination of spectroscopic (UV-visible, EPR, Hyscore and Mössbauer), ESI-MS and DFT studies, we found that, when starting from the FeIII precursor, an FeIII tosyliodinane adduct was formed and decomposed into an FeV tosylimido species which generated the catalytically active FeIV tosylimide through a comproportionation process with the FeIII precursor.  相似文献   
2.
BPh3 catalyzes the N-methylation of secondary amines and the C-methylenation (methylene-bridge formation between aromatic rings) of N,N-dimethylanilines or 1-methylindoles in the presence of CO2 and PhSiH3; these reactions proceed at 30–40 °C under solvent-free conditions. In contrast, B(C6F5)3 shows little or no activity. 11B NMR spectra suggested the generation of [HBPh3]. The detailed mechanism of the BPh3-catalyzed N-methylation of N-methylaniline ( 1 ) with CO2 and PhSiH3 was studied by using DFT calculations. BPh3 promotes the conversion of two substrates (N-methylaniline and CO2) into a zwitterionic carbamate to give three-component species [Ph(Me)(H)N+CO2⋅⋅⋅BPh3]. The carbamate and BPh3 act as the nucleophile and Lewis acid, respectively, for the activation of PhSiH3 to generate [HBPh3], which is used to produce key CO2-derived species, such as silyl formate and bis(silyl)acetal, essential for the N-methylation of 1 . DFT calculations also suggested other mechanisms involving water for the generation of [HBPh3] species.  相似文献   
3.
Herein, we successfully construct the 3D biocompatible graphene through crosslinking 2D graphene nanosheet onto carbon fiber paper with poly(diallyldimethylammonium chloride) (PDDA) as anode of the alcohol biofuel cell. Compared with the bioanode without 3D graphene, the current density and output power of PDDA-graphene-ADH bioanode is increased by 23 % and 41 % at a high concentration of ethanol at pH 8.9, suggesting the stabilization role of graphene in enzyme loading. The study provides us a deep analysis on structures and performances of the bioanode incl. electrochemistry, X-ray photoelectron spectra, and atomic force microscopy images, which is significant to develop the new methods to construct 3D porous electrodes in energy conversion device.  相似文献   
4.
5.
The mechanisms of CO2 coupling with the propargylic alcohol using alkali carbonates M2CO3 (M = Li, Na, K, Cs) have been investigated by means of density functional theory calculations. The calculations reveal that the target product tetronic acid (TA) is yielded through two stages: (a) the formation of the α-alkylidene cyclic carbonate (αACC) intermediate via Cs2CO3-mediated carboxylative cyclization of the propargylic alcohol with CO2, and (b) the conversion of the αACC intermediate with Cs2CO3 to produce the cesium salt of the TA. Since the overall kinetic barriers for the two stages are comparable and affordable, the excellent chemoselectivity to the TA should be primarily originated from the high thermodynamic stability of the cesium salt of the TA. Moreover, relative to the TA, the possibility to yield the by-product acyclic carbonate can be excluded due to the both kinetics and thermodynamic inferiority. This result is different from the organic base-mediated reaction. Alternatively, our calculations predict that CsHCO3 together generated with the cesium salt of the TA might also be an available mediating reagent for the incorporation of CO2 with the propargylic alcohol. Compared to other alkali carbonates M2CO3 (M = Li, Na, K), the stronger basicity of Cs2CO3 and the lower ionic potential of cesium ion can raise the effective concentration of the αACC intermediate, and thus the conversion of the αACC intermediate into the cesium salt of the TA can be achieved with high yield.  相似文献   
6.
We studied the ring opening of propylene oxide (PO) by salen-M coordinated OH group [M = Al(III), Sc(III), Cr(III), Mn(III), Fe(III), Co(II), Co(III), Ni(II), Cu(II), Zn(II), Ru(III) and Rh(III)]. The results show that the ring-opening energy barriers for M(II) complexes are much lower than those with M(III) complexes in the gas phase, and the barriers correlate linearly with the negative charges on the OH group and the Fukui function condensed on the OH group. The nucleophilicity ordering in the gas phase can be rationalized by the ratio of formal positive charges/radius of M cations. Solvent effect greatly increases the barriers of M(II) complexes but slightly changes the results of M(III) ones, making the barriers similar. Analysis indicates that the reaction heats are linearly proportional to the reverse reaction barriers. The relationships established here can be used to estimate the ring-opening barriers and to screen epoxide ring-opening catalysts.  相似文献   
7.
The PeakForce Quantitative Nanomechanical Mapping based on atomic force microscope (AFM) is employed to first visualize and then quantify the elastic properties of a model nitrile rubber/poly(vinyl chloride) (NBR/PVC) blend at the nanoscale. This method allows us to consistently observe the changes in mechanical properties of each phase in polymer blends. Beyond measuring and discriminating elastic modulus and adhesion forces of each phase, we tune the AFM tips and the peak force parameters in order to reliably image samples. In view of viscoelastic difference in each phase, a three‐phase coexistence of an unmixed NBR phase, the mixed phase, and PVC microcrystallites is directly visualized in NBR/PVC blends. The nanomechanical investigation is also capable of recognizing the crosslinked rubber phase in cured rubber. The contribution of the mixed phase was quantified and it was found that the mechanical properties of blends are mainly determined by the homogeneity and stiffness of the mixed phase. This study furthers our understanding the structure–mechanical property relationship of thermoplastic elastomers, which is important for their potential design and applications. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 662–669  相似文献   
8.
The reaction mechanism for the hydrolysis of trimethyl phosphate and of the obtained phosphodiester by the di‐CoII derivative of organophosphate degrading enzyme from Agrobacterium radiobacter P230(OpdA), have been investigated at density functional level of theory in the framework of the cluster model approach. Both mechanisms proceed by a multistep sequence and each catalytic cycle begins with the nucleophilic attack by a metal‐bound hydroxide on the phosphorus atom of the substrate, leading to the cleavage of the phosphate‐ester bond. Four exchange‐correlation functionals were used to derive the potential energy profiles in protein environments. Although the enzyme is confirmed to work better as triesterase, as revealed by the barrier heights in the rate‐limiting steps of the catalytic processes, its promiscuous ability to hydrolyze also the product of the reaction has been confirmed. The important role played by water molecules and some residues in the outer coordination sphere has been elucidated, while the binuclear CoII center accomplishes both structural and catalytic functions. To correctly describe the electronic configuration of the d shell of the metal ions, high‐ and low‐spin arrangement jointly with the occurrence of antiferromagnetic coupling, have been herein considered.  相似文献   
9.
Enantiopure β‐amino acids represent interesting scaffolds for peptidomimetics, foldamers and bioactive compounds. However, the synthesis of highly substituted analogues is still a major challenge. Herein, we describe the spontaneous rearrangement of 4‐carboxy‐2‐oxoazepane α,α‐amino acids to lead to 2′‐oxopiperidine‐containing β2,3,3‐amino acids, upon basic or acid hydrolysis of the 2‐oxoazepane α,α‐amino acid ester. Under acidic conditions, a totally stereoselective synthetic route has been developed. The reordering process involved the spontaneous breakdown of an amide bond, which typically requires strong conditions, and the formation of a new bond leading to the six‐membered heterocycle. A quantum mechanical study was carried out to obtain insight into the remarkable ease of this rearrangement, which occurs at room temperature, either in solution or upon storage of the 4‐carboxylic acid substituted 2‐oxoazepane derivatives. This theoretical study suggests that the rearrangement process occurs through a concerted mechanism, in which the energy of the transition states can be lowered by the participation of a catalytic water molecule. Interestingly, it also suggested a role for the carboxylic acid at position 4 of the 2‐oxoazepane ring, which facilitates this rearrangement, participating directly in the intramolecular catalysis.  相似文献   
10.
The dinuclear zinc complex reported by us is to date the most active zinc catalyst for the co‐polymerization of cyclohexene oxide (CHO) and carbon dioxide. However, co‐polymerization experiments with propylene oxide (PO) and CO2 revealed surprisingly low conversions. Within this work, we focused on clarification of this behavior through experimental results and quantum chemical studies. The combination of both results indicated the formation of an energetically highly stable intermediate in the presence of propylene oxide and carbon dioxide. A similar species in the case of cyclohexene oxide/CO2 co‐polymerization was not stable enough to deactivate the catalyst due to steric repulsion.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号