首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10013篇
  免费   732篇
  国内免费   775篇
化学   3282篇
晶体学   175篇
力学   119篇
综合类   21篇
数学   103篇
物理学   7820篇
  2024年   18篇
  2023年   106篇
  2022年   212篇
  2021年   174篇
  2020年   270篇
  2019年   224篇
  2018年   239篇
  2017年   316篇
  2016年   399篇
  2015年   353篇
  2014年   852篇
  2013年   656篇
  2012年   470篇
  2011年   914篇
  2010年   620篇
  2009年   714篇
  2008年   676篇
  2007年   738篇
  2006年   539篇
  2005年   415篇
  2004年   350篇
  2003年   326篇
  2002年   292篇
  2001年   299篇
  2000年   233篇
  1999年   225篇
  1998年   200篇
  1997年   105篇
  1996年   109篇
  1995年   78篇
  1994年   57篇
  1993年   48篇
  1992年   39篇
  1991年   33篇
  1990年   45篇
  1989年   21篇
  1988年   24篇
  1987年   26篇
  1986年   10篇
  1985年   16篇
  1984年   22篇
  1983年   7篇
  1982年   8篇
  1981年   8篇
  1980年   7篇
  1979年   6篇
  1978年   4篇
  1977年   3篇
  1974年   3篇
  1973年   5篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
1.
High-reflective multilayer laser coatings are widely used in advanced optical systems from high power laser facilities to high precision metrology systems. However, the real interface quality and defects will significantly affect absorption/scattering losses and laser induced damage thresholds of multilayer coatings. With the recent advances in the control of coating design and deposition processes, these coating properties can be significantly improved when properly engineered the interface and defects. This paper reviews the recent progress in the physics of laser damage, optical losses and environmental stability involved in multilayer reflective coatings for high power nanosecond near-infrared lasers. We first provide an overview of the layer growth mechanisms, ways to control the microstructures and reduce layer roughness, as well as the nature of defects which are critical to the optical loss and laser induced damage. Then an overview of interface engineering based on the design of coating structure and the regulation of deposition materials reveals their ability to improve the laser induced damage threshold, reduce the backscattering, and realize the desirable properties of environmental stability and exceptional multifunctionality. Moreover, we describe the recent progress in the laser damage and scattering mechanism of nodule defects and give the approaches to suppress the defect-induced damage and scattering of the multilayer laser coatings. Finally, the present challenges and limitations of high-performance multilayer laser coatings are highlighted, along with the comments on likely trends in future.  相似文献   
2.
Solar-driven interfacial vaporization by localizing solar-thermal energy conversion to the air−water interface has attracted tremendous attention. In the process of converting solar energy into heat energy, photothermal materials play an essential role. Herein, a flexible solar-thermal material di-cyan substituted 5,12-dibutylquinacridone (DCN−4CQA)@Paper was developed by coating photothermal quinacridone derivatives on the cellulose paper. The DCN−4CQA@Paper combines desired chemical and physical properties, broadband light-absorbing, and shape-conforming abilities that render efficient photothermic vaporization. Notably, synergetic coupling of solar-steam and solar-electricity technologies by integrating DCN−4CQA@Paper and the thermoelectric devices is realized without trade-offs, highlighting the practical consideration toward more impactful solar heat exploitation. Such solar distillation and low-grade heat-to-electricity generation functions can provide potential opportunities for fresh water and electricity supply in off-grid or remote areas.  相似文献   
3.
We report optical and nonlinear optical properties of CuS quantum dots and nanoparticles prepared through a nontoxic, green, one-pot synthesis method. The presence of surface states and defects in the quantum dots are evident from the luminescent behavior and enhanced nonlinear optical properties measured using the open aperture Z-scan, employing 5 ns laser pulses at 532 nm. The quantum dots exhibit large effective third order nonlinear optical coefficients with a relatively lower optical limiting threshold of 2.3 J cm−2, and the optical nonlinearity arises largely from absorption saturation and excited state absorption. Results suggest that these materials are potential candidates for designing efficient optical limiters with applications in laser safety devices.  相似文献   
4.
Non-adiabatic tapered fibers are basic photonic components used in a wide range of applications. Here we investigate a way to increase their utility through the controllable bending of one of their tapered sections. The experiments carried out explain, for the first time, the mechanics of this approach showing how these tapers can be used to build more sensitive sensors. Their use as highly efficient mode converters is also discussed.  相似文献   
5.
We proposed an electro-optic modulator with two-bus one-ring (TBOR) structure to improve the extinction ratio and reduce insert loss. It has a dual output compared with one-bus one-ring structure. In addition, double-layer graphene makes it possible for the modulation in the visible to mid-infrared wavelength range. It shows that this new electro-optic modulator can present two switching states well with low insertion loss, high absorption and high extinction ratio. At λ=1550 nm, when the switching states are based on the chemical potential, μc=0.38 eV and μc=0.4 eV, the insertion losses of both output ports are less than 2 dB, the absorption of the output port coupled via a micro-ring reaches 45 dB and the extinction ratio reaches 14 dB. When the refractive index of the dielectric material is 4.2, the applied voltage will be less than 1.2 V, thus can be used in low-voltage CMOS technology.  相似文献   
6.
We describe the synthesis and the physical properties of polyaromatic hydrocarbons (PAHs) containing a phosphorus atom at the edge. In particular, the impact of the successive addition of aromatic rings on the electronic properties was investigated by experimental (UV/Vis absorption, fluorescence, cyclic voltammetry) and theoretical studies (DFT). The physical properties recorded in solution and in the solid state showed that the P‐containing PAHs exhibit properties expected for an emitter in white organic light‐emitting diodes (WOLEDs).  相似文献   
7.
A zinc coordination polymer derived from pyridine-2,6-dicarboxylate (PDC), {[Zn2(PDC)2]}n, was successfully prepared via conventional, sonication and microwave-irradiation methods. The composition and characteristics of the obtained coordination polymers (CPs) were investigated by elemental analysis, TGA/DTA, X-ray diffraction and spectroscopic techniques. The so obtained CPs were heat-treated in the air at 600 °C for 2 h to produce ZnO of nanosized particles (NPs). It is of interest to note that the synthesis approach of the precursor greatly affects both the nanoparticle size and the structure of the resulting ZnO NPs. Moreover, the smallest particle size was associated with the sample derived from the ultrasonically prepared precursor. TEM analysis revealed that all samples have sphere-like morphologies. Structural analysis of the prepared ZnO samples was conducted and compared using Rietveld analysis of their PXRD patterns. Optical band gap calculations based on analysis of the UV–vis spectra of ZnO samples using Tauc's power law were achieved. The highest band gap of 3.63 eV was observed for ZnO sample obtained from the ultrasonically prepared precursor. Furthermore, the photocatalytic activity of ZnO NPs for the removal of Eosin Y color was monitored. The highest removal efficiency was recorded for ZnO originated from the ultrasonically synthesized precursor. Enhancement of removal efficiency that reached 98% was attained in only a period of 8 min. Its recycling test showed that it can be reused without structural changes over four cycling experiments.  相似文献   
8.
非线性光纤方向耦合器孤子动力特性分析   总被引:2,自引:0,他引:2  
吴智勇  王子华 《光子学报》1997,26(3):233-236
利用变分方法,导出了双曲正割型光孤子在非线性光纤耦合器中传输时满足的动力学方程组,分析了该方程组的平衡点性态,讨论了光孤子的开关特性.指出参数|β|<2π.是能实现完全的开关操作的必要条件.  相似文献   
9.
The theory of free-carrier absorption (FCA) is developed, in the extreme quantum limit when the carriers are assumed to populate only the lowest quantized energy level, for quasi-two and one-dimensional semiconducting quantum well structures where the carriers are scattered by ionized impurities. The radiation field is assumed to be polarized in the plane of the layer in the quasi-two-dimensional case and along the length of the wire in the quasi-one-dimensional case. Expressions for FCA are obtained for the cases where the impurities are either in the well (background impurities) or outside the well (remote impurities). Variation of FCA is numerically studied with photon frequency and well width.  相似文献   
10.
In this paper, we propose and demonstrate a new and original model for theoretical calculation and experimental measurement of the noise power spectral density (NPSD) in phase-modulated optical links. The phase modulation is operated in the RF frequency range by an external phase modulator. The NPSD is derived for the first time in interferometric systems, by considering all effects such as the 1/f FM noise of the laser and white noise applied to light from a 1550 nm DFB laser, with phase modulation. The results show for the first time the influence of the phase modulation index, modulation frequency and interferometric delay in the phase-to-intensity noise conversion. The experimental and simulation results of conversion of FM-noise to intensity noise in an optical link by considering the external RF phase modulation are shown with good agreement.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号