首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   56篇
  免费   7篇
  国内免费   1篇
化学   37篇
数学   1篇
物理学   26篇
  2022年   1篇
  2021年   1篇
  2018年   3篇
  2017年   3篇
  2016年   3篇
  2015年   2篇
  2014年   3篇
  2013年   10篇
  2012年   2篇
  2010年   3篇
  2009年   4篇
  2008年   4篇
  2007年   2篇
  2006年   4篇
  2005年   7篇
  2004年   1篇
  2003年   3篇
  2002年   3篇
  2001年   3篇
  1999年   1篇
  1983年   1篇
排序方式: 共有64条查询结果,搜索用时 0 毫秒
1.
Krati Joshi 《Molecular physics》2015,113(19-20):2980-2991
Finite-temperature behaviour of a hollow golden cage (HGC) plays a crucialrole in its potential applications as a catalyst, drug delivery agent, contrasting agent and so on. This physico-chemical property of HGCs is not well understood so far. In that context, Born–Oppenheimer molecular dynamics (BOMD) simulations are performed on a well-known ‘free-standing’ HGC. The cluster considered in this study is the ground state Au18 cluster (a cage with a diameter of about >5.5 Å). The results thus obtained are compared with the BOMD simulation results reported earlier on Au32 icosahedron cage, a conformation with a diameter of nearly. The sphericity of both the clusters is studied using a shape deformation parameter as a function of time and temperature. These results are supplemented by radial distribution function at various temperatures. The observations and analysis of results indicate that, both the clusters retain an HGC conformation from 300 to 400 K, admitting structural fluxionality by the Au18 cluster. Remarkably, the Au18 cluster is able to maintain its hollowness and sphericity up to a high temperature of 1000 K. Underlying structural and electronic properties influencing the individualistic behaviour of cages are highlighted. Composition of the frontier molecular orbitals and the charge distribution play a crucial role in the finite-temperature behaviour of the Au cages. The conclusions are supplemented by supporting calculations on another degenerate ground state Au18 hollow cage and a well-known pyramidal Au18 cage at 300 and 400 K.  相似文献   
2.
I set forth and discuss I.I. Rabis views on the nature of science and society, focusing specifically on Rabis views on science and government, science and education, and science and religion. I also explore the influence of Rabi and C.P. Snow on each other. In the 1960s, Rabi set forth his mature and boldest positions, advocating science as the center of education and science as the replacement for religion. His positions culminate in science as the universal culture. I highlight Rabi not only as a scientist and public servant, but also as a public intellectual actively engaged with and connected to major issues of his time.Michael A. Day is Professor of Physics at Lebanon Valley College. He holds doctorates in both physics and philosophy.  相似文献   
3.
Physicist Lee A. DuBridge became president of the California Institute of Technology in 1946. In this interview he recalls his dealings at Caltech with Linus Pauling; his memories of George W. Beadle, Theodore von Kármán, and J. Robert Oppenheimer; the military Vista Project at Caltech; and the difficulties surrounding the deportation of Hsue-Shen Tsien, Caltech's Goddard Professor of Jet Propulsion.  相似文献   
4.
Nobel laureate William A. Fowler recalls his early education in physics; his part in the history of nuclear physics at the California Institute of Technology in the 1930s; parallel efforts elsewhere, particularly at Berkeley and the Department of Terrestrial Magnetism in Washington,D.C.; his contacts with J. Robert Oppenheimer; and his work with Charles C. Lauritsen and Tommy Lauritsen before and after World War II.John Greenberg received his Ph.D. degree from the University of Wisconsin and was Caltech research fellow in history from 1980–1984. The Editors were saddened to learn that he died while this interview was in press. Requests for reprints may be directed to Judith R. Goodstein, Institute Archives 015A-74, Caltech, Pasadena, CA 91125 USA; e-mail: jrg@caltech.edu.  相似文献   
5.
6.
So far, most studies of the geometric phase effect have presumed that the phase is path‐independent; hence, one must supply another restriction concerning the boundary condition on the nuclear wave functions when dealing with nonsymmetric isotopomers of X3 systems. We report calculations of the vibrational spectra of HD2 using a recently proposed generalized Born–Oppenheimer (GBO) formalism. The calculations demonstrate that there are significant differences between the results calculated from the present GBO method and those based on the preceding presumption. © 2001 John Wiley & Sons, Inc. Int J Quant Chem 83: 279–285, 2001  相似文献   
7.
8.
The structural nature of the solvation shells of an iodate ion, which is known to be a polyoxy‐anion with a large cationic centre, is investigated by means of Born–Oppenheimer molecular dynamics (BOMD) simulations using BLYP and the dispersion corrected BLYP‐D3 functionals. The iodate ion is found to have two distinct solvation regions around the positively charged iodine (iodine solvation shell or ISS) and the negatively charged oxygens (oxygen solvation shell or OSS). We have looked at the spatial, orientational, and hydrogen bond distributions of water in the two solvation regions. It is found that the water orientational profile in the ISS is typical of a cation hydration shell. The hydrogen bonded structure of water in the OSS is found to be very similar to that of the bulk water structure. Thus, the iodate ion essentially behaves like a positively charged iodine ion in water as if there is no anionic part. This explains why the cationic character of the iodate ion was prominently seen in earlier studies. The arrangement of water molecules in the two solvation shells and in the intervening regions around the iodate ion is further resolved by looking at structural cross‐correlations. The electronic properties of the solvation shells are also looked at by calculating the solute–solvent orbital overlap and dipole moments of the solute and solvation shell water. We have also performed BOMD simulations of iodate ion‐water clusters at experimentally relevant conditions. The simulation results are found to be in agreement with experimental results. © 2018 Wiley Periodicals, Inc.  相似文献   
9.
Molecular dynamics (Born–Oppenheimer) simulations based on density functional theory have been carried out to investigate the solvation structure of monovalent Na+ and K+ cations in water under ambient conditions. Four recently proposed van der Waals (vdW) density functionals (LMKLL, DRSLL, DRSLL-PBE, DRSLL-optB88), the semiempirical vdW method of Grimme (BLYP-D3) and conventional gradient-corrected (GGA-BLYP) density functionals are applied in order to evaluate their accuracy in describing the hydration structure of alkali metal ions. Theoretical results are compared to available experimental data. Our results indicate that addition of corrections accounting for dispersion forces significantly improves the agreement between predicted and measured coordination numbers for both Na+ and K+ cations. Analysis of radial distribution functions brings further support to the notion that the choice of the generalised gradient approximation density functional impacts crucially on the computed structural properties. DRSLL-optB88 and BLYP-D3 provide the best agreement with experiment.  相似文献   
10.
Vibronic interactions have received increasing attention in modern structural chemistry. Edward Teller played a pioneering role in understanding and describing them during the “molecular physics” period of his scientific career. Very little is known about the two scientists who contributed significantly to our knowledge about these effects and whose names have become associated with Teller’s. This Editorial is devoted to Hermann Jahn and Rudolf Renner and attempts to lift them out of oblivion by paying them tribute for their contributions.
István Hargittai (Corresponding author)Email:
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号