首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2153篇
  免费   306篇
  国内免费   148篇
化学   712篇
晶体学   31篇
力学   557篇
综合类   43篇
数学   355篇
物理学   909篇
  2024年   4篇
  2023年   23篇
  2022年   40篇
  2021年   41篇
  2020年   62篇
  2019年   50篇
  2018年   81篇
  2017年   110篇
  2016年   104篇
  2015年   83篇
  2014年   120篇
  2013年   177篇
  2012年   116篇
  2011年   133篇
  2010年   128篇
  2009年   114篇
  2008年   123篇
  2007年   133篇
  2006年   140篇
  2005年   102篇
  2004年   90篇
  2003年   84篇
  2002年   76篇
  2001年   73篇
  2000年   51篇
  1999年   69篇
  1998年   47篇
  1997年   31篇
  1996年   24篇
  1995年   26篇
  1994年   24篇
  1993年   18篇
  1992年   24篇
  1991年   16篇
  1990年   7篇
  1989年   6篇
  1988年   11篇
  1987年   3篇
  1986年   7篇
  1985年   8篇
  1984年   4篇
  1983年   2篇
  1982年   4篇
  1981年   4篇
  1980年   4篇
  1979年   3篇
  1973年   1篇
  1971年   1篇
  1967年   1篇
  1959年   1篇
排序方式: 共有2607条查询结果,搜索用时 15 毫秒
1.
A one-dimensional bulk reaction model for the oxidation of nickeltitanium is formulated, with preferential oxidation of titaniumbeing included. The modelling is directed at the better understandingof the dominant mechanisms involved in the oxidation processand their significance for the biocompatibility of the alloy.Two different regimes for the relative diffusivities of oxygenand the metals are investigated. By assuming fast bulk reactions,different asymptotic structures emerge in different parameterregimes and the resulting models take the form of moving boundaryproblems. Different profiles of nickel concentration are obtained:in particular a nickel-rich layer (observed in practice) ispresent below the oxide/metal interface for the case when oxygenand the metals diffuse at comparable rates.  相似文献   
2.
3.
4.
Many recent algorithmic approaches involve the construction of a differential equation model for computational purposes, typically by introducing an artificial time variable. The actual computational model involves a discretization of the now time-dependent differential system, usually employing forward Euler. The resulting dynamics of such an algorithm is then a discrete dynamics, and it is expected to be “close enough” to the dynamics of the continuous system (which is typically easier to analyze) provided that small – hence many – time steps, or iterations, are taken. Indeed, recent papers in inverse problems and image processing routinely report results requiring thousands of iterations to converge. This makes one wonder if and how the computational modeling process can be improved to better reflect the actual properties sought. In this article we elaborate on several problem instances that illustrate the above observations. Algorithms may often lend themselves to a dual interpretation, in terms of a simply discretized differential equation with artificial time and in terms of a simple optimization algorithm; such a dual interpretation can be advantageous. We show how a broader computational modeling approach may possibly lead to algorithms with improved efficiency. AMS subject classification (2000)  65L05, 65M32, 65N21, 65N22, 65D18  相似文献   
5.
Measurements from depolarized lidars provide a promising method to retrieve both cloud and aerosol properties and a versatile complement to passive satellite-based sensors. For lidar observations of clouds and aerosols, multiple scattering plays an important role in the scattering process. Monte Carlo simulations are carried out to investigate the sensitivity of lidar backscattering depolarization to cloud and aerosol properties. Lidar parameters are chosen to be similar to those of the upcoming space-based CALIPSO lidar. Cases are considered that consist of a single cloud or aerosol layer, as well as a case in which cirrus clouds overlay different types of aerosols. It is demonstrated that besides thermodynamic cloud phase, the depolarized lidar signal may provide additional information on ice or aerosol particle shapes. However, our results show little sensitivity to ice or aerosol particle sizes. Additionally, for the case of multiple but overlapping layers involving both clouds and aerosols, the depolarized lidar contains information that can help identify the particle properties of each layer.  相似文献   
6.
The 3D‐elasticity model of a solid with a plane crack under the stress‐free boundary conditions at the crack is considered. We investigate variations of a solution and of energy functionals with respect to perturbations of the crack front in the plane. The corresponding expansions at least up to the second‐order terms are obtained. The strong derivatives of the solution are constructed as an iterative solution of the same elasticity problem with specified right‐hand sides. Using the expansion of the potential and surface energy, we consider an approximate quadratic form for local shape optimization of the crack front defined by the Griffith criterion. To specify its properties, a procedure of discrete optimization is proposed, which reduces to a matrix variational inequality. At least for a small load we prove its solvability and find a quasi‐static model of the crack growth depending on the loading parameter. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
7.
Using two different types of the laddering equations realized simultaneously by the associated Gegenbauer functions, we show that all quantum states corresponding to the motion of a free particle on AdS 2 and S 2 are splitted into infinite direct sums of infinite-and finite-dimensional Hilbert subspaces which represent Lie algebras u(1, 1) and u(2) with infinite- and finite-fold degeneracies, respectively. In addition, it is shown that the representation bases of Lie algebras with rank 1, i.e., gl(2, C), realize the representation of nonunitary parasupersymmetry algebra of arbitrary order. The realization of the representation of parasupersymmetry algebra by the Hilbert subspaces which describe the motion of a free particle on AdS 2 and S 2 with the dynamical symmetry groups U(1, 1) and U(2) are concluded as well.  相似文献   
8.
This paper deals with a computational analysis of the influence of the pressing method and part geometry on the final density distribution in the cold compaction process of ceramic alumina powders. The analysis is based on the explicit finite-element model proposed and validated in a previous study. The mechanical behavior of the processing material is described using a multisurface elastoplastic model, the modified Drucker-Prager/Cap model Published in Prikladnaya Mekhanika, Vol. 43, No. 10, pp. 129–134, October 2007.  相似文献   
9.
The shape, size, aggregation, hydration, and correlation times of water insoluble PEO‐PPO‐PEO triblock copolymer micelles with sodium dodecylsulfate (SDS) micelles were investigated using transport studies and dynamic light scattering technique. From the conductance of micellar solutions of the polymer in 25 mM SDS and 5 mM NaCl, the hydration of polymer micelles were determined using the principle of obstruction of electrolyte migration by the polymer. The asymmetry of the micellar particles of polymer and polymer‐SDS mixed micellar systems in 5 mM NaCl and their average axial ratios were calculated using intrinsic viscosity and hydration data obeying Simha–Einstein equation. Hydration number and micellar sizes were variable with temperature. The shape of the polymer micelles has been ellipsoidal rather than spherical. The micellar volume, hydrodynamic radius, radius of gyration, diffusional coefficients as well as translational, rotational and effective correlation times have been calculated from the absolute values of the axes. The partial molal volume of polymer micelles has also been determined and its comparison with the molar volume of pure polymer suggested a volume contraction due to immobilization of the water phase by the hydrophilic head groups of the polymer. The thermodynamic activation parameters for viscous flow favor a more ordered water structure around polymer micelles at higher temperatures. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 2410–2420, 2007  相似文献   
10.
The miniaturized calorimetric devices furnish a reduced working flat surface and permits measurements with extremely low-mass quantities. The experimental sensitivity shows relevant position dependence with x-y surface coordinates and with z-distance. The device identification is realized via a 2-D model based in Fourier general equation. Using the Marquardt method the experimental flat surface device can be identified and the fitted parameters used to simulate the behavior of the experimental system. From the model, the effects of several dissipation configurations can be evaluated. Also, via the RC-analogy, a way to 3-D experimental devices is roughly described. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号