首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   59篇
  免费   16篇
  国内免费   14篇
化学   66篇
晶体学   2篇
物理学   21篇
  2023年   5篇
  2022年   6篇
  2021年   7篇
  2020年   5篇
  2019年   6篇
  2018年   6篇
  2017年   3篇
  2016年   6篇
  2015年   3篇
  2014年   1篇
  2013年   11篇
  2012年   2篇
  2011年   2篇
  2010年   3篇
  2009年   1篇
  2008年   3篇
  2007年   2篇
  2006年   4篇
  2005年   2篇
  2004年   1篇
  2003年   5篇
  2002年   1篇
  2001年   1篇
  1997年   1篇
  1996年   1篇
  1981年   1篇
排序方式: 共有89条查询结果,搜索用时 31 毫秒
1.
Highly ordered composite nanowires with multilayer Ni/Cu and NiFe/Cu have been fabricated by pulsed electrodeposition into nanoporous alumina membrane. The diameter of wires can be easily varied by pore size of alumina, ranging from 30 to 100 nm. The applied potential and the duration of each potential square pulse determine the thickness of the metal layers. The nanowires have been characterized by transmission electron microscopy (TEM), magnetic force microscopy (MFM), and vibrating sample magnetometer (VSM) measurements. The MFM images indicate that every ferromagnetic layer separated by Cu layer was present as single isolated domain-like magnet. This technique has potential use in the measurement and application of magnetic nanodevices.  相似文献   
2.
Magnetic NiFe particles were synthesized through hydrothermal method using hydrazine as reductant. Composite particles with core-shell structure were further achieved by depositing silicon dioxide generated via carbonation decomposition of sodium silicate solution on the surface of magnetic cores. Characterized by XRD, the Ni9Fe particles are of fcc-type structure, and the structure of magnetic cores in composite particles was maintained despite being covered by SiO2 shell. The existence of SiO2 shells in the composite particles were demonstrated by SEM, EDS and IR. The results from TG and VSM indicated that the shell structure affected the physiochemical properties. The composite particles exhibited remarkable resistance to oxidation in comparison with Ni9Fe particles due to being protected by SiO2 shell. Meanwhile, both of them are soft magnetic materials, but Ms, Mr and Hc in Ni9[email protected]2 particle decreased compared with magnetic NiFe particles. The formation mechanisms of Ni9Fe micro-particles and composite Ni9Fe particles were discussed.  相似文献   
3.
NiFe2O4 magnetic nanoparticles (MNPs) were synthesized, characterized and applied as an air‐stable, inexpensive and magnetically separable nanocatalyst for the synthesis of structurally diverse sulfides. Efficient methodologies were developed for the synthesis of unsymmetric diaryl sulfides via odourless and one‐pot reactions of triphenyltin chloride/S8 or arylboronic acid/S8 as thiolating agents with aryl halides or nitroarenes as starting materials in the presence of base (K2CO3 or NaOH) and NiFe2O4 MNPs as a catalyst in water or poly (ethylene glycol) as solvent at 80–110 °C. Free from ligand and the unpleasant smell of thiols and with the use of magnetically reusable nanocatalyst, green solvents and commercially available and cheap sulfur source and starting materials, these methods are more eco‐friendly and practical than available protocols for the synthesis of sulfides.  相似文献   
4.
5.
6.
采用水热法合成了尖晶石型NiFe2O4,并利用X射线粉末衍射仪对其物相进行了表征,利用紫外-可见分光光度计对其光催化降解刚果红的性能进行了研究。以刚果红为光催化降解底物,探究了刚果红初始浓度、催化剂用量、溶液pH、不同光源等因素对NiFe2O4光催化降解刚果红活性的影响。结果表明,当刚果红溶液浓度为20 mg/L、催化剂NiFe2O4的用量为0.065 g、pH 2~10、在太阳光下照射480 min时,刚果红的降解率高达99%以上,催化剂性能稳定,适合处理刚果红类有机污染物。  相似文献   
7.
负载型Ni Fe/γ-Al_2O_3双金属催化剂的物理化学性质明显受还原温度的影响,进而影响月桂酸甲酯的加氢活性和产物选择性。金属Ni活性中心主要促进脱羰/脱羧(DOC)反应,Fe的加入能促进月桂酸甲酯发生加氢脱氧反应,促进C_(12)烷烃化合物生成。H_2-TPR、XRD、H_2-TPD和BET结果表明,高的还原温度有利于金属或合金活性中心形成,NiFe双金属催化剂的加氢活性取决于金属Ni、Fe和NiFe合金的含量;NiFe双金属催化剂吸附与活化H_2分子的能力明显受还原温度的影响。在研究的温度范围内,Ni活性中心具有优异的加氢和裂解性能,Fe物种的引入能有效抑制裂解性能。双金属催化剂的加氢活性顺序:NF420NF360NF450NF300,在420℃下经H_2还原制得的NF420催化剂具有最佳的月桂酸甲酯加氢性能,在反应温度为380℃时,月桂酸甲酯加氢转化率和烷烃化合物选择性分别高达93.3%和90.0%。  相似文献   
8.
In this study, CoFe2O4/Sawdust and NiFe2O4/Sawdust magnetic nanocomposites were synthesized using a hydrothermal method, and then characterized using X-ray powder diffraction, Infrared, scanning electron microscopy, Brunauer–Emmett–Teller/Barrett–Joyner–Halenda, and vibrating-sample magnetometer techniques. In this study, unmodified sawdust (US), modified sawdust (MS), unmodified CoFe2O4/sawdust (UCS), modified CoFe2O4/sawdust (MCS), unmodified NiFe2O4/sawdust (UNS), and modified NiFe2O4/Sawdust (MNS) magnetic nanocomposites, which are inexpensive, economical, environmentally friendly absorbents, and have a high selective hydrophobic, were used for the removal of oil from the water surface. The results show that the UCS, MCS, UNS, and MNS magnetic nanocomposites can selectively absorb the oil spreading on the water surface, due to its superhydrophobicity and superoleophilicity, and can be easily collected from water under the influence of a magnetic field. In addition, the results showed that the absorbents reach their equilibrium at the 30-min mark. Among all the absorbents, the MNS magnetic nanocomposite showed the maximum absorption capacity (18.172 g/g) at the 40-min mark. The results of the kinetic studies showed that the second-order kinetic equation with the highest correlation coefficient had the best fit with the experimental results.  相似文献   
9.
Composite structures have been widely concerned in the preparation of surface enhanced Raman scattering (SERS) substrates. In this paper, by solving the problem that the magnetic material was difficult to glow in magnetron sputtering, ferro-nickel (NiFe) alloy was deposited on the cicada wing (CW) and the NiFe/CW substrate was obtained. The results of sliver nanoparticles (Ag NPs) modified on the substrate were subsequently compared, and the SERS properties of the new Ag/NiFe/CW substrate were analyzed. Obviously, the intensity of SERS signals has been greatly improved after the modification of Ag NPs, and the substrate exhibits excellent reproducibility. The Ag NPs modified substrates were also applied to the detection of toxic crystal violet (CV) solution, which showed remarkable SERS activity. It has been proved that the strategy of modifying Ag NPs on the substrate to form a composite structure has great potential for improving the SERS performance of the substrate.  相似文献   
10.
To understand the molecular details of O2‐tolerant hydrogen cycling by a soluble NAD+‐reducing [NiFe] hydrogenase, we herein present the first bioinspired heterobimetallic S‐oxygenated [NiFe] complex as a structural and vibrational spectroscopic model for the oxygen‐inhibited [NiFe] active site. This compound and its non‐S‐oxygenated congener were fully characterized, and their electronic structures were elucidated in a combined experimental and theoretical study with emphasis on the bridging sulfenato moiety. Based on the vibrational spectroscopic properties of these complexes, we also propose novel strategies for exploring S‐oxygenated intermediates in hydrogenases and similar enzymes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号