首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
  国内免费   1篇
化学   6篇
物理学   2篇
  2023年   1篇
  2021年   1篇
  2020年   1篇
  2018年   1篇
  2017年   2篇
  2013年   1篇
  2005年   1篇
排序方式: 共有8条查询结果,搜索用时 15 毫秒
1
1.
Discrete and symmetric three-dimensional(3D)DNA nanocages have been revoked as excellent candidates for various applications,such as guest component encapsulation and organization(e.g.dye molecules,proteins,inorganic nanoparticles,etc.)to construct new materials and devices.To date,a large variety of DNA nanocages has been synthesized through assembling small individual DNA motifs into predesigned structures in a bottom-up fashion.Most of them rely on the assembly using multiple copies of single type of motifs and a few sophisticated nanostructures have been engineered by co-assembling multi-types of DNA tiles simultaneously.However,the availability of complex DNA nanocages is still limited.Herein,we demonstrate that highly symmetric DNA nanocages consisted of binary DNA point-star motifs can be easily assembled by deliberately engineering the sticky-end interaction between the component building blocks.As such,DNA nanocages with new geometries,including elongated tetrahedron(E-TET),rhombic dodecahedron(R-DOD),and rhombic triacontahedron(R-TRI)are successfully synthesized.Moreover,their design principle,assembly process,and structural features are revealed by polyacryalmide gel electrophoresis(PAGE),atomic force microscope(AFM)imaging,and cryogenic transmission electron microscope imaging(cryo-TEM)associated with single particle reconstruction.  相似文献   
2.
Adsorption of SO2 and O3 molecules on pristine boron nitride (B12N12) and Ni-decorated B12N12 nano-cages has been systemically investigated through density functional theory (DFT) methods. Adsorption energies (thermodynamics), bond distances, charge analysis, dipole moments, orbital analysis and density of states are calculated by van der Waals DFT method (MPW1PW91) functional. The adsorption energies of O3 and SO2 on pristine B12N12 are about −143.8 and −14.0 kJ mol−1, respectively. The interaction energies of O3 and SO2 with pristine B12N12 are indicative of chemisorption and physisorption, respectively. Ni-decorated B12N12 (Ni@BN) enhances adsorption of both O3 and SO2 species. The interaction energies for adsorption of SO2 are about −166 and −277 kJ mol−1 whereas the corresponding energies for O3 are −362 and −396 kJ mol−1 for configuration A and B, respectively. These observations show that functionalized B12N12 are highly sensitive toward SO2 and O3 molecules.  相似文献   
3.
《Physics letters. A》2020,384(5):126128
To find a sensor for Amantadine (AM) antiparkinsonian drug, we studied its interaction with Al12N12 and B12N12 nanoclusters by density functional theory calculations. The AM molecule attaches via its –NH2 group to the Al or B atoms of Al12N12 or B12N12 with Gibbs free energy change about −31.5 or −26.1 kcal/mol. Increasing the AM concentration, the interaction becomes weaker due to steric effects. The AM adsorbs on the Al12N12 and B12N12 with two different mechanisms, including electrostatic and charge transfer, respectively. The AM significantly reduces the Al12N12 work function from 4.50 to 3.66 eV, increasing the electron field emission. Thus, the AlN cluster may be a work function type sensor. Upon the AM adsorption on the BN cage, the HOMO level is largely destabilized, reducing the Eg from 6.84 to 5.01 eV which largely increases the electrical conductivity. This indicates that the BN cluster may be a potential electronic sensor.  相似文献   
4.
魏晋欣  陈雅文  张鸿洋  庄赞勇  于岩 《催化学报》2021,42(1):78-86,后插2-后插7
金属有机框架(MOFs)材料因其高孔隙率特性在气体吸附分离、药物传递、催化等领域具有广泛应用.近年来,将功能化纳米颗粒(NPs)封装在MOFs中的研究在催化领域引起了科学家的兴趣.其中,较大比表面积的MOFs可以为NPs的分散和固定提供理想的平台,而NPs反过来可以为催化反应引入更多的活性位点,提高催化效率.然而,MOFs本身的孔隙常局限于微孔(<2 nm),这极大地限制了NPs在MOFs孔隙中的有效封装.因此,设计并制备含有介孔(2?50 nm)或大孔(>50 nm)的多级孔MOFs,揭示其孔径大小对复杂NPs/MOFs复合催化剂催化性能的影响具有重要意义.然而,具有不同孔径MOFs的可控制备具有巨大挑战性,MOFs孔径如何影响和调控NPs/MOFs复合材料催化活性是一个悬而未决的科学问题.本文结合金属离子刻蚀法和调控配体法设计了两种具有不同孔径(大孔和介孔)的UiO-66,并系统研究了孔径大小对CdS NPs的分布以及所形成的复合催化剂CdS/UiO-66的催化性能的影响及机制.我们首先阐明了UiO-66调控孔径后影响和修饰CdS NPs的空间分布:对于具有开放大孔结构的UiO-66纳米笼,CdS NPs倾向于自发沉积在UiO-66纳米笼内壁上.相比之下,CdS NPs则主要附着于介孔UiO-66的外表面.据此,具有大孔和介孔结构的CdS/UiO-66表现出不同的光催化性能.以光还原4-硝基苯胺反应为例,大孔CdS/UiO-66的反应速率常数是介孔和实心样品的3?13倍,且优于许多文献报道的CdS复合材料催化剂,表明大孔结构在制备高效复合催化材料上的潜在优势.通过光吸收能力、能级结构等计算表征,该催化剂的电子空穴对传输遵循S-型异质结光催化机制;大孔CdS/UiO-66具有较高光催化活性可归因于纳米笼对NPs的限域效应,即CdS被限制在UiO-66纳米笼内,缩短了催化剂与底物之间的电子传输距离;空心纳米笼结构则保护其内部的CdS NPs免受光腐蚀的影响,进而获得较高的催化效率和循环稳定性.可见,本文提出了一种结合离子刻蚀法和调控配体法获得具有不同孔径MOFs的有效策略,阐明了调控MOFs的孔径尺寸可以影响NPs的空间分布,是制约其性能的关键因素,有望为高效催化剂的设计及催化机制的研究提供新的依据.  相似文献   
5.
《印度化学会志》2023,100(1):100805
Aluminum nitride and boron nitride nanocages have recently been discovered. The properties of these compounds vary according to their size. In this paper, we study the adsorption of MELs on aluminum nitride and boron nitride nanocages in the solution phase using density functional theory. The results of adsorption energies indicate that during the adsorption on aluminum nanocages, ether oxygen atoms show stronger adsorption, while adsorption is stronger on boron nitride nanocage from the hydroxyl group oxygen. The results of thermodynamic calculations indicate that all adsorption positions of aluminum nitride are thermodynamically favorable. However, in the case of boron nitride, some positions are thermodynamically unfavorable. In terms of recovery time, borne nitride is not a good adsorbent because of very small recovery time. The aluminum nitride may be able to behave as a suitable sensor for the MELs in the solution phase. Nevertheless, boron nitride does not have this capability, since it does not significantly change the number of conducting electrons.  相似文献   
6.
Density functional theory (DFT) calculations were applied at the M05-2X/6-311++G(d,p) level of the theory to investigate the interaction of the B12N12 nanocage (BN) and alkali metal ions (Li+, Na+, K+, Rb+ and Cs+) in the gas phase and in water. On the basis of the results, BN nanocage is able to form a selective complex with Li+. Water, as a solvent, reduces the stability of the metal ion-BN complexes in comparison with the gas phase. Natural bond orbital (NBO) and quantum theory of atoms in molecules (QTAIM) analyses, reveal that the electrostatic interaction between the BN and metal ions can be considered as the driving force for complex formation in which the role of water is of significance. Density of states (DOSs) analysis of the BN nanocage structure in the presence of different metal ions showed a noticeable change in the frontier orbitals, especially in the gas phase, and Fermi level shifting toward the lower values.  相似文献   
7.
本文采用有限元方法研究了金银合金纳米笼二聚体的光学性质。结果发现,二聚体的吸收和散射效率对入射光的偏振方向有很强的依赖性,当光偏振方向沿着二聚体的长轴方向时,偶极子模式分成两个模式:键合模式和反键合模式,前一种模式的频带比纳米笼单体的共振频带低,而后一种模式的频带比纳米笼单体的共振频带高。此外,二聚体的等离子体性质还取决于两个纳米笼之间的距离,距离越小,等离子体模式红移越大。  相似文献   
8.
In this contribution we report studies of the nature of solvation and resonance energy transfer processes in a reverse micelle (RM) upon encapsulation of a digestive enzyme, alpha-chymotrypsin (CHT). We have used one donor, Coumarin 500 (C500), and three acceptors Rhodamine 123 (R123, cationic), ethidium bromide (EtBr, cationic), and Merocyanine 540 (MC540, anionic). By selectively exciting the donor at the surface of the RM with a proper excitation wavelength we have examined solvation dynamics in the microenvironment. The solvation correlation function in the RM without CHT exhibits single-exponential decay with time constant approximately 660 ps, which is similar to that of the CHT-included RM. However, in the case of CHT-included RM (w(0)=10), the time-resolved anisotropy and spectral linewidth analysis of the surface-bound donor reveal the existence of an annular aqueous channel of thickness approximately 2.5 A between the enzyme surface and the inner surface of the RM. The aqueous channel is a potential host for the water-soluble substrate and also is involved in maintaining the proper functionality of RM encapsulated CHT. The studies use both steady-state and time-resolved fluorescence resonance energy transfer (FRET) techniques to measure donor-acceptor distances in the RM and also emphasize the danger of using steady-state fluorescence quenching as a method in careful estimation of the distances. The local geometrical restriction on the donor and acceptor molecules was estimated from time-resolved polarization (anisotropy) measurements. The time-resolved anisotropy of the donor and acceptor molecules also revealed significant randomization of the relative orientation of transition dipoles of the donor and acceptor, justifying the use of 2/3 as the value of the orientation factor kappa2. These studies attempt to elucidate the excellence of the RM as a nanohost of biological macromolecules.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号