首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   177篇
  免费   7篇
  国内免费   2篇
化学   172篇
物理学   14篇
  2022年   1篇
  2021年   1篇
  2020年   1篇
  2019年   2篇
  2017年   1篇
  2016年   7篇
  2015年   2篇
  2014年   5篇
  2013年   3篇
  2012年   11篇
  2011年   10篇
  2010年   5篇
  2009年   11篇
  2008年   11篇
  2007年   7篇
  2006年   7篇
  2005年   60篇
  2004年   26篇
  2003年   7篇
  2001年   2篇
  2000年   2篇
  1993年   1篇
  1990年   1篇
  1984年   1篇
  1980年   1篇
排序方式: 共有186条查询结果,搜索用时 804 毫秒
1.
Feng HT  Wei HP  Li SF 《Electrophoresis》2004,25(6):909-913
A portable chip-CE system with potential gradient detection (PGD) was developed and applied to the determinations of alkali metals and alkaloids. The separation efficiency appeared to be satisfactory and nonaqueous capillary electrophoresis (NACE) proved to be applicable to PGD or conductivity detection. The power supplies, separation and detection were built on a device of 3 kg in weight. A branch channel near the end of the separation channel was designed to perform PGD and make the application of relatively high field strength possible. The study is the first report on the application of PGD on the microchip platform. The design of the chip-CE system shows several advantages, such as simplicity, miniaturization and wide applicability.  相似文献   
2.
3.
Xu JJ  Peng Y  Bao N  Xia XH  Chen HY 《Electrophoresis》2005,26(19):3615-3621
In the present paper, we describe a microfluidics-based sensing system for nonelectroactive anions under negative separation electric field by mounting a single carbon fiber disk working electrode (WE) in the end part of a poly(dimethylsiloxane) microchannel. In contrast to work in a positive separation electric field described in our previous paper (Anal. Chem. 2004, 76, 6902-6907), here the electrochemical reduction reaction at the WE is not coupled with the separation high-voltage (HV) system, whereas the electrochemical oxidation reaction at the WE is coupled with the separation HV system. The electroactive indicator is the carbon fiber WE itself but not dissolved oxygen. This provides a convenient and sensitive means for the determination of nonelectroactive anions by amperometry. The influences of separation voltage, detection potential, and the distance between the WE and the separation channel outlet on the response of the detector have been investigated. The present detection mode is successfully used to electrochemically detect F-, Cl-, SO4(2-), CH3COO-, H2PO4-. Based on the preliminary results, a detection limit of 2 microM and a dynamic range up to three orders of magnitude for Cl- could be achieved.  相似文献   
4.
Li N  Hsu CH  Folch A 《Electrophoresis》2005,26(19):3758-3764
Portable microfluidic systems provide simple and effective solutions for low-cost point-of-care diagnostics and high-throughput biomedical assays. Robust flow control and precise fluidic volumes are two critical requirements for these applications. We have developed a monolithic polydimethylsiloxane (PDMS) microdevice that allows for storing and mixing subnanoliter volumes of aqueous solutions at various mixing ratios. Filling and mixing is controlled via two integrated PDMS microvalve arrays. The volumes of the microchambers are entirely defined by photolithography, hence volumes from picoliter to nanoliter can be fabricated with high precision. Because the microvalves do not require an energy input to stay closed, fluid can be stored in a highly portable fashion for several days. We have confirmed the mixing precision and predictability using fluorescence microscopy. We also demonstrate the application of the device for calibrating fluorescent calcium indicators. Due to the biocompatibility of PDMS, the device will have broad applications in miniaturized diagnostic assays as well as basic biological studies.  相似文献   
5.
Single cell analytics for proteomic analysis is considered a key method in the framework of systems nanobiology which allows a novel proteomics without being subjected to ensemble-averaging, cell-cycle, or cell-population effects. We are currently developing a single cell analytical method for protein fingerprinting combining a structured microfluidic device with latest optical laser technology for single cell manipulation (trapping and steering), free-solution electrophoretical protein separation, and (label-free) protein detection. In this paper we report on first results of this novel analytical device focusing on three main issues. First, single biological cells were trapped, injected, steered, and deposited by means of optical tweezers in a poly(dimethylsiloxane) microfluidic device and consecutively lysed with SDS at a predefined position. Second, separation and detection of fluorescent dyes, amino acids, and proteins were achieved with LIF detection in the visible (VIS) (488 nm) as well as in the deep UV (266 nm) spectral range for label-free, native protein detection. Minute concentrations of 100 fM injected fluorescein could be detected in the VIS and a first protein separation and label-free detection could be achieved in the UV spectral range. Third, first analytical experiments with single Sf9 insect cells (Spodoptera frugiperda) in a tailored microfluidic device exhibiting distinct electropherograms of a green fluorescent protein-construct proved the validity of the concept. Thus, the presented microfluidic concept allows novel and fascinating single cell experiments for systems nanobiology in the future.  相似文献   
6.
Miniaturization of separation columns implies equally reduced vol- umes of injectors, detectors, and the connecting channels. Planar chip technology provides a powerful means for the fabrication of micron-sized structures such as channels. This is demonstrated by two examples. An optical absorbance detector chip exhibits the expected behavior of a 1 mm optical path length cell despite its volume of 1 nL. A capillary electrophoresis device allows integrated injections of 100 pL samples, efficiencies of 70,000 to 160,000 theoretical plates in 10 to 20 seconds, and external laser-induced fluorescence detection at any capillary length of choice between 5 and 50 mm.  相似文献   
7.
Chen G  Bao H  Yang P 《Electrophoresis》2005,26(24):4632-4640
A microchip CE-amperometric detection (AD) system has been fabricated by integrating a two-dimensionally adjustable CE microchip and an AD cell containing a one-dimensionally adjustable disk detection electrode in a Plexiglas holder. It facilitates the precise 3-D alignment between the channel outlet and the detection electrode without a complicated 3-D manipulator. The performance of this unique system was demonstrated by separating five aromatic amines (1,4-phenyldiamine, aniline, 2-methylaniline, 4-chloroaniline, and 1-naphthylamine) of environmental concern. Factors influencing their separation and detection processes were examined and optimized. The five analytes have been well separated within 140 s in a 74 cm long separation channel at a separation voltage of +2500 V using a 10 mM phosphate buffer (pH 3.5). Highly linear response is obtained for the five analytes over the range 20-200 microM with the detection limits ranging from 0.46 to 1.44 microM, respectively. The present system demonstrated long-term stability and reproducibility with RSDs of less than 5% for the peak current (n = 9). The new approach for the microchannel-electrode alignment should find a wide range of applications in CE, flowing injection analysis, and other microfluidic analysis systems.  相似文献   
8.
In the present study, we demonstrate the benefits of a shear-driven rotating microchamber system for the enhancement of microarray hybridizations, by comparing the system with two commonly used hybridization techniques: purely diffusion-driven hybridization under coverslip and hybridization using a fully automated hybridization station, in which the sample is pumped in an oscillating manner. Starting from the same amount of DNA for the three different methods, a series of hybridization experiments using mouse lung and testis DNA is presented to demonstrate these benefits. The gain observed using the rotating microchamber is large: both in terms of analysis speed (up to tenfold increase) and in final spot intensity (up to sixfold increase). The gain is due to the combined effect of the hybridization chamber miniaturization (leading to a sample concentration increase if comparing iso-mass conditions) and the transport enhancement originating from the rotational shear-driven flow induced by the rotation of the chamber bottom wall.  相似文献   
9.
Miniaturizing all dimensions of apparatus, such as electronics and computers, is the current trend followed by scientists in various fields. The idea of Lab-on-a-Chip has significantly expanded and found its broad applications in analytical chemistry. Microplasmas can act as a sample excitation source and are the miniaturized versions of full-sized plasmas. These can be created in various forms, such as direct current, microwave induced, capacitively coupled and inductively coupled plasmas. Scaling down the size would reduce the amount of gases, liquids and consumables required, as well as the sample analysis time, which in turn would decrease the operating costs. Therefore, several research groups are involved in the development of microplasmas for utilisation in analytical instruments.  相似文献   
10.
A novel method for speciation analysis of inorganic arsenic was developed by on-line hyphenating microchip capillary electrophoresis (chip-CE) with hydride generation atomic fluorescence spectrometry (HG-AFS). Baseline separation of As(III) and As(V) was achieved within 54 s by the chip-CE in a 90 mm long channel at 2500 V using a mixture of 25 mmol l(-1) H3BO3 and 0.4 mmol l(-1) CTAB (pH 8.9) as electrolyte buffer. The precisions (RSD, n=5) ranged from 1.9 to 1.4% for migration time, 2.1 to 2.7% for peak area, and 1.8 to 2.3% for peak height for the two arsenic species at 3.0 mg l(-1) (as As) level. The detection limits (3sigma) for As(III) and As(V) based on peak height measurement were 76 and 112 microg l(-1) (as As), respectively. The recoveries of the spikes (1 mg l(-1) (as As) of As(III) and As(V)) in four locally collected water samples ranged from 93.7 to 106%.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号