首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   77篇
  免费   2篇
化学   4篇
数学   12篇
物理学   63篇
  2023年   1篇
  2020年   1篇
  2019年   3篇
  2018年   3篇
  2016年   1篇
  2015年   3篇
  2014年   2篇
  2013年   4篇
  2012年   2篇
  2011年   4篇
  2010年   3篇
  2009年   8篇
  2008年   3篇
  2007年   1篇
  2006年   6篇
  2005年   4篇
  2004年   3篇
  2003年   2篇
  2002年   7篇
  2001年   3篇
  2000年   3篇
  1999年   7篇
  1998年   2篇
  1997年   1篇
  1993年   1篇
  1992年   1篇
排序方式: 共有79条查询结果,搜索用时 31 毫秒
1.
The values of the Higgs mass are obtained for two possibilities of extending the standard model in a way compatible with the existence of a noncommutative structure at high energies. We assume the existence of a big desert between the low energy electroweak scale and the high energy scale Λ=1.1×1017 GeV, where noncommutative features become relevant. We conclude that it is extremely difficult to depart from the Higgs mass value obtained from noncommutative geometry for the standard model with three generations only.  相似文献   
2.
Spatial orientation of carbohydrates is a meaningful parameter in carbohydrate recognition processes. To vary orientation of sugars with temporal and spatial resolution, photosensitive glycoconjugates with favorable photochromic properties appear to be opportune. Here, a series of azobenzene glycosides were synthesized, employing glycoside synthesis and Mills reaction, to allow “switching” of carbohydrate orientation by reversible E/Z isomerization of the azobenzene N=N double bond. Their photochromic properties were tested and effects of azobenzene substitution as well as the effect of anomeric configuration and the orientation of the sugars 2-hydroxy group were evaluated.  相似文献   
3.
《偏微分方程通讯》2013,38(4):451-482
ABSTRACT

We consider the Schrödinger equation in ?2, with external Yang–Mills potentials that decay exponentially as |x| → ∞. We prove that the scattering amplitude at fixed positive energy determines the potentials uniquely modulo a gauge transformation, assuming that potentials are small.  相似文献   
4.
In abstract Yang–Mills theory the standard instanton construction relies on the Hodge star having real eigenvalues which makes it inapplicable in the Lorentzian case. We show that for the affine connection an instanton-type construction can be carried out in the Lorentzian setting. The Lorentzian analogue of an instanton is a spacetime whose connection is metric compatible and Riemann curvature irreducible (pseudoinstanton). We suggest a metric-affine action which is a natural generalization of the Yang–Mills action and for which pseudoinstantons are stationary points. We show that a spacetime with a Ricci flat Levi-Civita connection is a pseudoinstanton, so the vacuum Einstein equation is a special case of our theory. We also find another pseudoinstanton which is a wave of torsion in Minkowski space. Analysis of the latter solution indicates the possibility of using it as a model for the neutrino.  相似文献   
5.
Defining a spin connection is necessary for formulating Dirac's bispinor equation in a curved space-time. Hestenes has shown that a bispinor field is equivalent to an orthonormal tetrad of vector fields together with a complex scalar field. In this paper, we show that using Hestenes' tetrad for the spin connection in a Riemannian space-time leads to a Yang-Mills formulation of the Dirac Lagrangian in which the bispinor field Ψ is mapped to a set of SL(2,RU(1) gauge potentials FαK and a complex scalar field ρ. This result was previously proved for a Minkowski space-time using Fierz identities. As an application we derive several different non-Riemannian spin connections found in the literature directly from an arbitrary linear connection acting on the tensor fields (FαK, ρ). We also derive spin connections for which Dirac's bispinor equation is form invariant. Previous work has not considered form invariance of the Dirac equation as a criterion for defining a general spin connection.  相似文献   
6.
We generalize the self-dual parameterization of the SU(2) Yang–Mills field proposed by Niemi and Faddeev for describing the infrared limit of the theory to the case of the gauge group SU(3). We demonstrate that the duality property intrinsic to the SU(2) gauge field cannot be transferred automatically to the higher-rank group case. We interpret the algebraic structures appearing in the Lagrangian for the new compact variables in terms of the group products SU(2)3.  相似文献   
7.
8.
By replacing the ordinary product with the so-called -product, one can construct an analog of the anti-self-dual Yang–Mills (ASDYM) equations on the noncommutative . Many properties of the ordinary ASDYM equations turn out to be inherited by the -product ASDYM equation. In particular, the twistorial interpretation of the ordinary ASDYM equations can be extended to the noncommutative , from which one can also derive the fundamental structures for integrability such as a zero-curvature representation, an associated linear system, the Riemann–Hilbert problem, etc. These properties are further preserved under dimensional reduction to the principal chiral field model and Hitchin’s Higgs pair equations. However, some structures relying on finite dimensional linear algebra break down in the -product analogs.  相似文献   
9.
This paper investigates boundary value problems for Hermitian Yang—Mills equations over complex manifolds. The main result is the unique solubility of the Dirichlet problem for the Hermitian Yang—Mills equation. Connections with a number of topics are found, including the link with loop groups.  相似文献   
10.
Two-component superconductivity based on the two-band superconductor has a functional topology such as an inter-band phase difference soliton (i-soliton) to realize topological electronics (topolonics). Many gauge field theories are applied to investigate the topology of two-band superconductivity. To ease experimental and electronics applications, these theories should be refined. Weinberg–Salam theory and SU(2) (two-dimensional special unitary symmetry) gauge field theory are proper starting points. An effective extra force field because of the crystal structure and inter-band Josephson interaction, rather than spontaneous symmetry breaking, simplifies the conventional gauge field theory.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号