首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
物理学   2篇
  2013年   1篇
  2009年   1篇
排序方式: 共有2条查询结果,搜索用时 0 毫秒
1
1.
The passage of heavy ions in a track detector polymeric material produces lattice deformations. These deformations may be in the form of latent tracks or may vanish by self annealing in time. Heavy ion irradiation produces modifications in polymers in their relevant electrical, chemical and optical properties in the form of rearrangement of bonding, cross-linking, chain scission, formation of carbon rich clusters and changes in dielectric properties etc. Modification depends on the ion, its energy and fluence and the polymeric material. In the present work, a study of the dielectric response of pristine and heavy ion irradiated Makrofol-KG polycarbonate is carried out. 40 μm thick Makrofol-KG polycarbonate films were irradiated to various fluences with Si8+ ions of 100 MeV energy from Pelletron at Inter University Accelerator Centre (IUAC), New Delhi and Ne6+ ions of 145 MeV from Variable Energy Cyclotron Centre, Kolkata. On irradiation with heavy ions dielectric constant (ɛ′) decreases with frequency where ɛ′ increases with fluence for both the ions. Variation of loss factor (tan δ) with frequency for pristine and irradiated with Si ions reveals that tan δ increases as the frequency increases. Tan δ also increases with fluence. While Ne irradiated samples tan δ shows slight variation with frequency as well as with fluence. Tan δ has positive values indicating the dominance of inductive behavior.   相似文献   
2.
The enhancement of diffusion by neutron irradiation has been investigated on a Cu-36 percent Zn alloy for various neutron fluxes and irradiation temperatures by means of in-pile measurements of electrical resistivity. For fresh samples the diffusion rate depends on temperature with an activation energy of 0.35 eV. During repeated irradiations the diffusion rate decreases and becomes nearly temperature independent. The variation of the concentration of interstitials and vacancies with irradiation time has been numerically calculated for various neutron fluxes, irradiation temperatures and sink concentrations. A comparison of the experimental and theoretical results shows that the point defects annihilate in fresh samples mainly by pair recombination and in samples which had been repeatedly cycled by pair recombination and at fixed sinks. Point defect clusters acting as sinks are created during the course of the irradiation as shown by electron microscope investigations. The radiation enhanced diffusion rate was found to depend on interstitials only, the activation energy of which was determined to 0.70 eV.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号