首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   477篇
  免费   5篇
  国内免费   56篇
化学   348篇
晶体学   2篇
力学   1篇
数学   2篇
物理学   185篇
  2024年   1篇
  2023年   6篇
  2022年   5篇
  2021年   6篇
  2020年   12篇
  2019年   7篇
  2018年   6篇
  2017年   7篇
  2016年   11篇
  2015年   8篇
  2014年   18篇
  2013年   26篇
  2012年   81篇
  2011年   52篇
  2010年   35篇
  2009年   27篇
  2008年   45篇
  2007年   42篇
  2006年   27篇
  2005年   15篇
  2004年   17篇
  2003年   11篇
  2002年   15篇
  2001年   14篇
  2000年   4篇
  1999年   8篇
  1998年   6篇
  1997年   4篇
  1996年   5篇
  1995年   1篇
  1994年   6篇
  1993年   2篇
  1992年   4篇
  1991年   1篇
  1988年   1篇
  1986年   1篇
  1982年   1篇
排序方式: 共有538条查询结果,搜索用时 15 毫秒
1.
The behaviors of ferromagnetic transition metals of the first period: Fe, Co and Ni are examined within density functional theory calculations in two dimensional carbon extended networks using model structure LiC6. Around geometry optimized structures, the energy-volume equations of states considering non magnetic and spin polarized configurations established ferromagnetic ground states with magnetizations –reduced with respect to the metals’– of 2 μB for FeC6 and 1 μB for CoC6 while no magnetic solution could be identified for NiC6. In the D6h point group of the P6/mmm space group lm decomposition of the d states results with increasing energy into doublet state E1g with d(x2-y2) and d(xy); singlet state A1g d(z2) and doublet state E2g d(xz) and d(yz) lying on EF and responsible of the onset of magnetic moments. This was mirrored via molecular orbital approach with a construct of Fe embedded between two extended carbon networks thus validating the model structure proposed for TC6 compounds. The 100% polarization in one spin channel allows proposing potential uses in spintronics applications.  相似文献   
2.
In this work, we have used the MuMax3 software to simulate devices consisting of a ferromagnetic thin film placed over a heavy metal thin film. The devices are two interconnected partial-disks where a Néel domain wall is formed in the disks junction. In our simulations we investigate devices with disk radius r=50 nm and different distance d between the disks centers (from d=12 nm to d=2R=100 nm). By applying strong sinusoidal external magnetic fields, we find a mechanism able to create, annihilate and even manipulate a skyrmion in each side of the device. This mechanism is discussed in terms of interactions between skyrmion and domain wall. The Néel domain wall formed in the center of the device interacts with the Néel skyrmion, leading to a process of transporting a skyrmion from one disk to the other periodically. Our results have relevance for potential applications in spintronics such as logical devices.  相似文献   
3.
Chulsu Jo  Y.-R. Jang 《Surface science》2006,600(8):1592-1595
Magnetic properties of Co chain-coated carbon nanotube (CNT) were investigated using a first-principles calculation. Binding energy between Co chain and CNT increased with the coverage ratio, and the adsorption of Co chains on CNT enhanced the conductance channel. Total magnetic moment of Co chains coated on CNT increased with the coverage ratio, while the magnetic moment per Co atom decreased due to spin flip of majority spin states in Co atoms. Spin polarization at the Fermi level of the Co chains was calculated to converge to that of bulk fcc Co.  相似文献   
4.
New indides Ce3Ge0.66In4.34 and Ce11Ge4.74In5.26 were synthesized from the elements by arc‐melting and subsequent annealing at 870 K. Single crystals were grown through special annealing procedures in sealed tantalum tubes in a high‐frequency furnace. Both compounds were investigated on the basis of X‐ray powder and single crystal data: I4/mcm, La3GeIn4 type, a = 848.8(1), c = 1192.0(2) pm, Z = 4, wR2 = 0.0453, 499 F2 values, 17 variables for Ce3Ge0.66In4.34 and I4/mmm, Sm11Ge4In6 type (ordered version of the Ho11Ge10 type), a = 1199.3(2), c = 1662.0(3) pm, wR2 = 0.0507, 1217 F2 values, 41 variables for Ce11Ge4.74In5.26. The Ce3Ge0.66In4.34 structure shows a mixed Ge/In occupancy on the 4c Wyckoff position. This site is octahedrally coordinated by cerium atoms. These octahedra share all edges, leading to a three‐dimensional network. The latter is penetrated by a two‐dimensional indium substructure which consists of flattened tetrahedra at In–In distances of 291 and 300 pm. The Ce11Ge4.74In5.26 structure contains three crystallographically independent germanium sites. The latter are coordinated by eight or nine cerium neighbors. These CN8 and CN9 polyhedra are condensed to a complex network which is penetrated by a three‐dimensional indium network with In–In distances of 301–314 pm. The 16m site shows a mixed In/Ge occupancy. Chemical bonding in both compounds is dominated by the p elements. Both ternaries studied exhibit localized magnetism due to the presence of Ce3+ ions. The compound Ce3GeIn4 remains paramagnetic down to 1.72 K, whereas Ce11Ge4In6 orders ferromagnetically at TC = 7.5 K.  相似文献   
5.
A novel complex [Cu(NIT2Py)(PDA)(H2O)]·(CH3OH)(H2O) has been synthesized and structurally characterized by X-ray diffraction methods. It crystallizes in the monoclinic space group P2(1)/c. The structure consists of [Cu(NIT2Py)(PDA)(H2O)] moiety, one solvent methanol molecule and one water molecule. The copper(II) ion is in a distorted octahedral environment: one nitrogen atom and one oxygen atom from the NIT2Py, one nitrogen atom from the PDA (2,6-pyridine dicarboxylic acid) and one oxygen atom from the aqueous in the basal plane; two oxygen atoms from the PDA in the axial position. The units of [Cu(NIT2Py)(PDA)(H2O)] were connected as one dimension chain by the intermolecular hydrogen bonds. The complex exhibits intramolecular antiferromagnetic interactions between the Cu(II) ion and the NIT2Py.  相似文献   
6.
The mixed‐valent oxotantalate Eu1.83Ta15O32 was prepared from a compressed mixture of Ta2O5 and the metals in a sealed Ta ampoule at 1400 °C. The crystal structure was determined by means of single crystal X‐ray diffraction: space group R3¯, a = 777.2(6) pm and c = 3523.5(3) pm, Z = 3, 984 symmetrically independent reflections, 83 variables, RF = 0.027 for I > 2σ (I). The structure is isotypic to Ba2Nb15O32. The salient feature is a [Ta(+8/3)6O12iO6a] cluster consisting of an octahedral Ta6 core bonded to 12 edge‐bridging inner and six outer oxygen atoms. The clusters are arranged to slabs which are sandwiched by layers of [Ta(+5)3O13] triple octahedra. Additional Ta(+5) and Eu(+2) atoms provide the cohesion of these structural units. Twelve‐fold coordinated Eu(+2) atoms are situated on a triply degenerate position 33 pm displaced from the threefold axis of symmetry. A depletion of the Eu(+2) site from 6 to 5.5 atoms per unit cell reduces the number of electrons available for Ta‐Ta bonding from 15 to 14.67 electrons per cluster. Between 125 and 320 K Eu1.83Ta15O32 is semi‐conducting with a band gap of 0.23 eV. The course of the magnetization is consistently described with the Brillouin function in terms of a Mmol/(NAμB) versus B/T plot in the temperature range 5 K — 320 K and at magnetic flux densities 0.1 T — 5 T. At moderate flux densities (< 1 T) the magnetic moment agrees fairly well with the expected value of 7.94 μB for free Eu (2+) ions with 4f7 configuration in 8S7/2 ground state. Below 5 K, anisotropic magnetization measurements at flux densities B < 1 T point to an onset of an antiferromagnetic ordering of Eu spins within the layers and an incipient ferromagnetic ordering perpendicular to the layers.  相似文献   
7.
Mesoporous silica was loaded with nanoparticulate MnS via a simple post-synthesis treatment. The mesoporous material that still contained surfactant was passivated to prevent MnS formation at the surface. The surfactant was extracted and a novel manganese ethylxanthate was used to impregnate the pore network. This precursor thermally decomposes to yield MnS particles that are smaller or equal to the pore size. The particles exhibit all three common polymorphs. The passivation treatment is most effective at lower loadings because at the highest loadings (SiO2:MnS molar ratio of 6:1) large particles (>50 nm) form at the exterior of the mesoporous particles. The integrity of the mesoporous network is maintained through the preparation and high order is maintained. The MnS particles exhibit unexpected ferromagnetism at low temperatures. Strong luminescence of these samples is observed and this suggests that they may have a range of important application areas.  相似文献   
8.
Studies of two distinct classes of chromium(III) cage complexes are discussed. The first are compact oxo- and carboxylate cages, made by heating precursors to high temperature under a flow of nitrogen. One of these cages, [Cr12O9(OH)3(O2CCMe3)15], has an S = 6 spin ground state which proves a very interesting subject for study by EPR and MCD spectroscopy. Use of other carboxylates leads to other octa- and dodeca-nuclear complexes. The second class of compounds are homo- and hetero-metallic wheels and chains bridged by fluoride and carboxylates. These include the first heterometallic anti-ferromagnetically coupled ring systems and are being widely studied in areas as diverse as magnetic cooling and quantum information processing. The mechanism by which these unusual cyclic and acyclic structures form is discussed.  相似文献   
9.
Structural and Magnetochemical Studies on KCuGaF6 The crystal structure of KCuGaF6 was determined on the base of X‐ray single crystal data (wR2 = 0.084 for 2476 independent reflections). The compound crystallizes with a = 728.56(4), b = 989.51(6), c = 676.27(3) pm, β = 93.120(5)°, Z = 4 in space group P21/c of the pyrochlore related KCuCrF6 type. The octahedral coordinations [GaF6] and [CuF6] are slightly resp. strongly distorted (mean values Ga‐F: 188.2 pm resp. Cu‐F: 188.2/200.1/227.6 pm). The longest distances Ga‐F and the shortest ones Cu‐F are found within octahedral chains of these two kinds of atoms, running along [100] and [001], resp., and being mutually bridged as well (M‐F‐M in between 114 and 145°). The magnetic mole susceptibilities measured at powders and at a single crystal follow the isotropic Heisenberg model for S = 1/2, if effects of chain disrupture are considered in the form of some paramagnetic portion. No indication of threedimensional magnetic order is observed down to T = 2 K and low magnetic fields H < 100 G. KCuGaF6 (J/k = —71 K for the powder) is distinguished this way from the chain structure compounds KCuAlF6 und Na2CuScF7 (J/k = —76 resp. —59 K) which were also magnetically studied and yield similar antiferromagnetic exchange constants J/k.  相似文献   
10.
SynthesisandMagneticPropertiesofBinuclearMn(Ⅱ)ComplexeswithAlkoxideBridgeYanShi-ping;FanBo;LiaoDai-zheng;JiangZong-huiandWang...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号