首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   0篇
化学   7篇
数学   1篇
物理学   1篇
  2013年   1篇
  2007年   1篇
  2005年   1篇
  2004年   1篇
  2001年   2篇
  2000年   1篇
  1999年   1篇
  1998年   1篇
排序方式: 共有9条查询结果,搜索用时 15 毫秒
1
1.
Summary Modulated temperature DSC was investigated, comparing data found experimentally to that derived from theory. Deviation from theory was found with regard to the amplitude of the modulated heat flow signal when large modulation amplitudes were employed in the experiment. These deviations were determined to be dependent on the absolute temperature and it was concluded that further investigation of the heat flow signal obtained during MTDSC experiments is required.  相似文献   
2.
The purpose of this study was to investigate the feasibility of modulating the temperature programme of a conventional DSC by use of an alternating gas-flow system. Modulated temperature differential scanning calorimetry (MTDSC) is an important thermal analysis technique but suffers from a limited applicable frequency range due to the mass of the sample and DSC cell leading to the impingement of thermal conductivity effects. We suggest that the frequency limit can be increased by replacing the cell as the source of temperature modulation with an external gaseous source, directed towards the sample and reference pans. In this evaluation, an alternating gas-flow was passed through a line to a forced gas-flow accessory (FGFA). The FGFA consisted of two matched cylinders containing chambers that allowed pre-temperature-equilibration of the stream of gas before it was passed over the sample and reference pans. The development of this device revealed the essential practical requirements of gas-flow modulation for high-frequency temperature modulation. These include the following: an appropriately sealed tunable gas supply to both sample and reference pans, an effective method for high-frequency cycling of the gas-flow rate, a small aperture to deliver the flowing gas directly over the pan and a temperature equilibration chamber. The results from samples of quenched PET and amorphous Saquinavir indicate that gas-flow modulation is indeed feasible, with the FGFA able to raise the attainable temperature modulation frequency by an order of magnitude compared to conventional MTDSC. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
3.
A study of the effects of changing sample mass and purge gas on the phase lag and calculation of the out of phase (kinetic) component for polystyrene in MTDSC was undertaken. The results confirm those from an earlier study that suggested the kinetic signal is unchanged by altering these parameters thus it is probably a correct quantitative measure of this signal. The effects of long annealing times were also studied and it was shown that all the signals of MTDSC are affected in contrast to a previous study showing that for moderate annealing the reversing and kinetic signals are substantially invariant. Nevertheless the non-reversing signal remains useful for characterising relative enthalpy losses. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
4.
A model for the melting of polymers, assuming the polymer crystalstake the form of lamellæ, or thin sheets, of material,is discussed. The model is derived on the assumption that themelting point of a lamella depends upon its thickness, thata lamella melts the instant this temperature is exceeded, andthat lamellæ with higher melting points grow by accumulatingsurplus melt. The model is analysed for a temperature controlthat is the sum of a linear and a sinusoidal function of time,as in modulated-temperature differential scanning calorimetry,which is a new experimental technique for measuring thermalproperties of materials. Some predictions regarding the outputof such calorimetry for polymer melting are made.  相似文献   
5.
The miscibility of poly(N-isopropylacrylamide) (PNIPA) with poly(vinyl pyrrolidone) (PVP) and a cross-linked poly(acrylic acid) (Carbopol® 971P) was evaluated from the rheological data of aqueous dispersions and the temperature of glass transitions of films made of binary mixtures. PNIPA has a low critical solubility temperature (LCST) of about 33°C, below which 1% dispersion behaves as a viscous system. At temperatures above LCST, the hydrophobic interactions among the isopropyl groups initially provide transient networks of greater elasticity. The LCST of PNIPA as well as its T g (144°C, estimated by DSC and MTDSC of films) were not modified by the presence of PVP. The immiscibility of PNIPA and PVP was confirmed by the absence of interaction between both polymers as shown by FTIR analysis of the films. In contrast, PNIPA and carbopol were miscible and the behaviour of their mixtures differed significantly from that of the parent polymers; i.e. a strong synergistic effect on the viscoelasticity of the dispersions was observed below the LCST. As temperature increased, the blends showed a decrease in the loss and storage moduli, especially those with greater PNIPA proportions. The fall was smoother as the PNIPA proportion decreased. This behaviour may be explained as the result of the balance between PNIPA/carbopol hydrogen bonding interactions (as shown in the shift of C=O stretch in FTIR spectra) and PNIPA/PNIPA hydrophobic interactions. The T g values of the films of the blends showed a positive deviation from the additivity rule; the mixtures containing more than 1:1 amide:carboxylic acid groups have a notably high Tg (up to 181°C). This increase is related to the stiffness induced in the films by the PNIPA/carbopol interactions.  相似文献   
6.
The heat capacity calibration ‘constants’ of a commercial MTDSC system (TA 3100) were determined in a variety of experimental conditions. For a given modulation frequency, the calibration constants are the same within a few percents for different temperatures, and over a wide range of modulation amplitudes and scan rates. This variation decreases below 1% if hidden instrumental constraints are taken into account, which are related with the capability of the control system to achieve the desired temperature program. On the other hand, the calibration constant changes substantially with the period, and takes anomalously high values for the short modulation periods (20+40 s). Rules to optimize the accuracy of the system are given. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
7.
Proper filler‐matrix compatibility is a key factor in view of obtaining nanocomposites with well‐dispersed nanofillers displaying enhanced properties. In this respect, polymer‐filler interaction can be improved by a proper combination of matrix and nanofiller polarities. This is explored for matrices ranging from nonpolar high density poly(ethylene) to ethylene‐vinyl acetate (EVA) copolymers with varying vinyl acetate contents, in combination with several types of organoclay or carbon nanotubes. A novel in situ characterization methodology using modulated temperature differential scanning calorimetry is presented to evaluate the matrix‐filler interaction. During quasi‐isothermal crystallization of the matrix, an “excess” contribution is observed in the recorded heat capacity signal because of reversible melting and crystallization. Its magnitude considerably decreases upon addition of nanofiller in case of strong interfacial interaction, whereas the influence is moderate in case of a less interacting matrix‐filler combination. It is suggested that the “excess heat capacity” can be used to quantify the segmental mobility of polymer chains in the vicinity of the nanofiller. Hence it provides valuable information on the strength of interaction, governed by the physical and chemical nature of matrix and filler. Heating experiments subsequent to quasi‐isothermal crystallization point at a certain degree of molecular ordering, responsible for crystal nucleation in EVA copolymers. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 1291–1302, 2007  相似文献   
8.
We have investigated the glass transition relaxation of two room-temperature ionic liquids using Modulated Temperature Differential Scanning Calorimetry (MTDSC). Furthermore, conventional DSC was used to clarify their crystallisation behaviour. One of the liquids avoids crystallisation, while the other shows cold crystallisation. A step-by-step temperature scanning experimental procedure was used to analyse in detail the thermal behaviour of the latter in the crystallisation and melting temperature regions. The existence of polymorphism is discussed.  相似文献   
9.
The dynamic heat capacity and glass‐transition temperature of polystyrene (PS)/poly(vinyl acetate‐co‐butyl acrylate) (VAc–BA) (50:50 w/w) structured latex films as a function of annealing time at 70, 77, and 85 °C were examined with modulated‐temperature differential scanning calorimetry. The PS and poly(vinyl acetate‐con‐butyl acrylate) components were considered to be the cores and shells, respectively, in the structured latex. The dynamic heat capacity decreased with time. The glass‐transition temperatures of the PS and VAc–BA phases shifted to higher values after annealing. The results of thermogravimetry showed that there existed about 1.8% residual water in the films. The mean free volume and relative concentration of holes at room temperature (before and after annealing) and 85 °C, as a function of time, were obtained with positron annihilation lifetime spectroscopy (PALS). The PALS results indicated no significant change in free volume during annealing. It is believed that the loss, by diffusion, of residual water mainly caused a decrease in heat capacity and an increase in the glass‐transition temperatures. As little as 1.8% residual water in the structured latex films had a significant influence on the thermal properties. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 1659–1664, 2001  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号