首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24篇
  免费   5篇
  国内免费   2篇
化学   6篇
力学   10篇
物理学   15篇
  2023年   1篇
  2021年   1篇
  2019年   1篇
  2018年   1篇
  2017年   2篇
  2015年   2篇
  2014年   1篇
  2013年   3篇
  2012年   2篇
  2011年   1篇
  2007年   1篇
  2006年   2篇
  2005年   4篇
  2004年   2篇
  2003年   2篇
  2000年   2篇
  1989年   1篇
  1988年   1篇
  1985年   1篇
排序方式: 共有31条查询结果,搜索用时 15 毫秒
1.
 为了考察材料晶体学特性对表面熔坑形成机制的影响,利用强流脉冲电子束(HCPEB)对喷丸前、后的304奥氏体不锈钢进行表面辐照处理,对HCPEB诱发的表面熔坑形貌进行了详细的表征。实验结果表明,HCPEB辐照后样品表面形成了大量的火山状熔坑,熔坑数密度和熔坑尺寸随电子束能量的增加而减小,材料表面的杂质或夹杂物容易成为熔坑的核心,并在熔坑形成的喷发过程中被清除,起到净化表面的作用。此外,喷丸前、后样品表面熔坑数密度遵循相似的分布规律,喷丸处理使熔坑数密度显著增大,表明材料的晶体学特性对表面熔坑形成有重要的影响,晶界、位错等结构缺陷是熔坑形核的择优位置。  相似文献   
2.
 采用考虑混凝土拉伸破坏的TCK失效模型,运用AUTODYN软件对跑道内爆毁伤进行了数值模拟。研究了炸点置于面层混凝土底部时,不同装药量和不同面层混凝土厚度对爆破漏斗坑参数的影响规律。结果表明:数值模拟结果较好地反映了混凝土因拉伸损伤引起的破裂和抛掷漏斗现象。基于数值模拟得到的漏斗坑参数值,建立了漏斗坑半径、空腔半径与面层厚度的无量纲表达式,计算得到的漏斗坑参数值得到了实验验证。  相似文献   
3.
Samples from vesicular Lonar impactite have been investigated by Mössbauer spectroscopy and SEM in combination with elemental analysis. Observation reveal the new-formation of oxide minerals have occurred with nucleation in particular at the walls of the vesicles interpreted as having formed from condensation of the gas phase having caused the vesicles to form in the first place. Elemental analysis of Ti-magnetites gives very similar compositions irrespective of the oxides grains being vesicle or matrix associated (Fe/Ti ratios approximately 3). The room temperature spectra of the oxides show magnetically ordered components due to A, B, and C sites in the substituted spinel. The occurrence of these ordered components are not in accordance with expectations from the bulk chemical compositions, suggesting the presence of fine scaled intergrowth of Ti-oxide and Ti-magnetite.  相似文献   
4.
The laser spallation effect due to intense shockwaves caused by a brief and intense laser pulse irradiating a target surface, 2 mm thick, has been investigated for silver and other materials. For 300 ps IR laser pulse, at intensities of the order of 1016 W/cm2, the shockwave may produce deformations of the back-face in ductile materials, such as Ag, Cu and Al. In heavy materials with high tensile strength, such as Ta, the shockwave produces cracks in the bottom of the laser crater but not deformation in the back-face, while in brittle materials, such as monocrystalline Ge, it produces only superficial cracks and flaking, but not deformation and spallation of the back-face. In thick polymeric materials, such as high-density polyethylene, the ablated crater shape is well defined and the shockwave is strongly damped, and no deformation has been observed in the back-face. The laser ablation yield and the ion acceleration in the backward direction have been measured by mass lost and time-of-flight measurements. SEM microscopy of the different irradiated targets, showing details of the crater size, edges, flaking and deformation in the back-face, useful for a discussion on the shockwave propagation and shock pressure calculation, is presented.  相似文献   
5.
Optically stimulated luminescence (OSL) of synthetic stishovite was investigated for a future dating technique of meteor impact craters. Luminescence around 330 nm was measured on the γ-ray irradiated stishovite under two stimulating light sources of infrared laser (830 nm) and blue light emitting diode set (470 nm). Thermoluminescence (TL) studies before and after the OSL measurements showed the intensities around 100–200°C and 220–350°C to increase and those around 350–450°C to decrease. This indicates that a part of deep-trapped charges excited during the OSL measurements were retrapped by shallower traps. The infrared stimulated luminescence (IRSL) after the TL measurement up to 450°C could not be detected, while the blue light stimulated luminescence (BLSL) after TL had about one-tenth of the intensity before TL. This indicates that a part of the charges in shallower traps were detrapped thermally and returned to the deeper traps which were related to BLSL. The result implies that some of the BLSL-related traps are quite stable at room temperature and could be used for geological dating. In addition, two paramagnetic centers produced by sudden release of high pressure in synthesis process were found in the unirradiated stishovite by electron spin resonance (ESR). Their g-factors are g=2.00181 and g=2.00062 for an axial signal and g=2.00305 for the other isotropic signal. These signals could be used for an evidence of impacts if those signals could be stored in geological time.  相似文献   
6.
Cobalt-60 gamma ray induced polymerization of vinylidine chloride has been studied, as an example of precipitating type of polymers. The percentage conversion of the monomer was not linear with the absorbed dose but showed acceleration. By studying the initial part of the curve which was linear, the initial rates of polymerization have been determined for different temperatures and dose rates. The dose rate exponent was found to be 0.48, and the energy of activation was observed to be 7.4 kcal/mol. The radical yield was determined by competition reaction with a stable free radical DPPH using the induction period method and GR was found to be 21.0. The intrinsic viscosities of the polymers have been determined in o-dichlorobenzene at 120°C. The results show a maximum in molecular weight as the radiation dose is increased. These results as well as the results on the dose rate exponent, and energy of activation are discussed.  相似文献   
7.
本文介绍了液滴对多层液靶的撞击实验研究,实验中液体从不同高度滴落,同时改变液靶的液层厚度,通过高速摄影机记录撞击成坑的过程,将胶片扫描数据输入计算机,并通过图像软件处理获得最终成坑数据。由实验结果分析了液滴撞击多层液靶成坑的特点,在一定的撞击能量情况下,撞击成坑现象发生于第一层液靶内,界面能在多层液靶不互溶时成为影响成坑状态的一个重要参数。根据能量守恒定律,并通过对撞击能量转化过程的分析,得出了撞击成坑最大坑径公式。  相似文献   
8.
采用非火药驱动二级轻气炮发射球形弹丸,对单层5A06铝合金板进行高速撞击实验研究,从而模拟空间碎片对航天器防护结构的高速撞击作用。实验得到了该铝合金板在不同的速度区间的损伤模式。结果表明,弹丸撞击速度一定时,弹坑深度和弹坑直径均与弹丸直径呈线性关系。当撞击速度在4km/s至5km/s时,靶板上的弹坑深度和弹坑直径随撞击速度的增大而减小,在其它速度范围内,弹坑深度和弹坑直径随撞击速度的增大而增大。通过固定弹丸直径,变化撞击速度,寻找临界撞击速度的方法获得了该铝合金板在弹丸撞击速度为1.0km/s至4.2km/s时的撞击极限曲线,并将实验弹坑深度与由Cour-Palais方程得到的预测弹坑深度进行了比较,实验弹坑深度大于预测值。  相似文献   
9.
An indirect, compositional depth profiling of an inorganic multilayer system using a helium low temperature plasma (LTP) containing 0.2% (v/v) SF6 was evaluated. A model multilayer system consisting of four 10 nm layers of silicon separated by four 50 nm layers of tungsten was plasma‐etched for (10, 20, 30) s at substrate temperatures of (50, 75, and 100) °C to obtain crater walls with exposed silicon layers that were then visualized using time‐of‐flight secondary ion mass spectrometry (ToF‐SIMS) to determine plasma‐etching conditions that produced optimum depth resolutions. At a substrate temperature of 100 °C and an etch time of 10 s, the FWHM of the second, third, and fourth Si layers were (6.4, 10.9, and 12.5) nm, respectively, while the 1/e decay lengths were (2.5, 3.7, and 3.9) nm, matching those obtained from a SIMS depth profile. Though artifacts remain that contribute to degraded depth resolutions, a few experimental parameters have been identified that could be used to reduce their contributions. Further studies are needed, but as long as the artifacts can be controlled, plasma etching was found to be an effective method for preparing samples for compositional depth profiling of both organic and inorganic films, which could pave the way for an indirect depth profile analysis of inorganic–organic hybrid structures that have recently evolved into innovative next‐generation materials. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
10.
We propose a new approach to express SIMS depth profiling on a TOF.SIMS‐5 time‐of‐flight mass spectrometer. The approach is based on the instrument capability to independently perform raster scans of sputter and probe ion beams. The probed area can be much smaller than the diameter of a sputter ion beam, like in the AES depth profiling method. This circumstance alleviates limitations on the sputter beam–raster size relation, which are critical in other types of SIMS, and enables analysis on a curved‐bottomed sputter crater. By considerably reducing the raster size, it is possible to increase the depth profiling speed by an order of magnitude without radically degrading the depth resolution. A technique is proposed for successive improvement of depth resolution through profile recovery with account for the developing curvature of the sputtered crater bottom in the probed area. Experimental study of the crater bottom form resulted in implementing a method to include contribution of the instrumental artifacts in a nonstationary depth resolution function within the Hofmann's mixing–roughness–information depth model. The real‐structure experiment has shown that the analysis technique combining reduction of a raster size with a successive nonstationary recovery ensures high speed of profiling at ~100 µm/h while maintaining the depth resolution of about 30 nm at a 5 µm depth. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号