首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   47篇
  免费   2篇
化学   10篇
物理学   39篇
  2020年   1篇
  2019年   1篇
  2017年   1篇
  2015年   1篇
  2014年   1篇
  2013年   1篇
  2010年   2篇
  2009年   4篇
  2008年   1篇
  2007年   7篇
  2006年   6篇
  2005年   2篇
  2004年   6篇
  2003年   5篇
  2002年   1篇
  2001年   1篇
  1999年   2篇
  1998年   1篇
  1996年   3篇
  1995年   1篇
  1991年   1篇
排序方式: 共有49条查询结果,搜索用时 15 毫秒
1.
The behavior of zirconium atoms at the W(100) surface associated with oxygen adsorption at different sample temperatures has been studied by Auger electron spectroscopy (AES), ion scattering spectroscopy (ISS), and the relative change of the work function (Δф) measured by the onset of the secondary electron energy distribution. The results have revealed: (i) adsorption of zirconium onto the W(100) surface followed by the elevation of the sample temperature up to 1710 K in an oxygen partial pressure of 2.7 × 10−4 induces complete diffusion of zirconium atoms into the W(100) substrate; (ii) further exposure of oxygen induces co-existence of oxygen and tungsten on the surface at 1710 K, resulting in a work function of 4.37 eV; (iii) keeping the sample temperature at 1710 K, simple evacuation of the system has resulted in surface segregation of zirconium atoms to the surface to form a zirconium atomic layer on the top-most surface, reducing the work function to 2.7 eV. The results have revealed that this specific behavior of zirconium atoms at high temperature assures, with very good reproducibility, the highly stable performance and long service life of Zr---O/W(100)-emitters in practical use, even in a low vacuum of 10−6 Pa.  相似文献   
2.
With the widespread use of engineered nanoparticles for biomedical applications, detailed surface characterization is essential for ensuring reproducibility and the quality/suitability of the surface chemistry to the task at hand. One important surface property to be quantified is the overlayer thickness of self‐assembled monolayer (SAM) functionalized nanoparticles, as this information provides insight into SAM ordering and assembly. We demonstrate the application of high sensitivity low‐energy ion scattering (HS‐LEIS) as a new analytical method for the fast thickness characterization of SAM functionalized gold nanoparticles (AuNPs). HS‐LEIS demonstrates that a complete SAM is formed on 16‐mercaptohexadecanoic acid (C16COOH) functionalized 14 nm AuNPs. HS‐LEIS also experimentally provides SAM thickness values that are in good agreement with previously reported results from simulated electron spectra for surface analysis of X‐ray photoelectron spectroscopy data. These results indicate HS‐LEIS is a valuable surface analytical method for the characterization of SAM functionalized nanomaterials. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
3.
The self diffusion of Mn and Pd in a single grain icosahedral Al69.9Pd20.5Mn9.6 quasicrystal has been determined by low energy ion scattering (LEIS). The diffusion was determined by depositing different elements (Pd, Mn) on the surface and measuring the rate of change in surface composition as a function of temperature by LEIS. The surface composition was monitored over the temperature range of 355-575 K for Mn and 440-745 K for Pd and compared to model calculations to allow the activation energy for diffusion to be determined. Activation energies of 0.20 ± 0.01 eV for Mn and 0.64 ± 0.03 eV for Pd have then been measured for self diffusion in i-Al-Pd-Mn, respectively. No deviation from Arrhenius behavior was detected in the temperature range covered by the present experiments. From the low values of activation energy we propose that this range of diffusion is phason related, reflecting the specific nature of the icosahedral structure.  相似文献   
4.
The fully-oxidized surface that forms on (1 1 1) oriented Ni3Al single crystals, with and without Pt addition, at 300-900 K under oxygen pressures of ca. 10−7 Torr was studied using XPS, AES, and LEIS. Two main types of surfaces form, depending upon oxidation temperature. At low-temperature, the predominant oxide is NiO, capped by a thin layer of aluminum oxide, which we refer to generically as AlxOy. At high-temperature (i.e., 700-800 K), NiO is replaced by a thick layer of AlxOy. By comparing samples that contain 0, 10 and 20 at.% Pt in the bulk, we find that the effect of Pt is to: (1) reduce the maximum amount of both NiO and AlxOy; and (2) shift the establishment of the thick AlxOy layer to lower temperatures. Platinum also decreases the adsorption probability of oxygen on the clean surface.  相似文献   
5.
Experimental evidence for surface segregation of Pt at (1 1 1) surfaces of ternary (Pt, Ni)3Al alloys is presented, based upon Auger electron spectroscopy, low energy ion scattering, and angle-resolved X-ray photoelectron spectroscopy. Density functional calculations in the dilute limit confirm that Pt segregation is energetically favored.  相似文献   
6.
Alkali metals (AM) on semiconductors have been investigated as a simple model system for the metal-semiconductor interfaces due to their simple electronic structures. Especially, cesium (Cs) on Si(0 0 1) surface has been studied with various experimental techniques. In this study, we investigated the atomic structure of initial Cs adsorption on Si(0 0 1)-(2×1) surface using coaxial impact collision ion scattering spectroscopy. When Cs atoms are adsorbed on Si(0 0 1)-(2×1) up to 0.2 ML at room temperature, the initial adsorption site is on-top T3 site with poor periodicity and the length of Si dimer is reserved as in the clean Si(0 0 1) surface. It is also found that Cs atoms adsorbed on Si(0 0 1) surface with a height of 2.83±0.05 Å from the second layer of Si(0 0 1) surface.  相似文献   
7.
The adsorption of potassium on Fe(100) was studied by time-of-flight forward scattering and recoiling spectroscopy (TOF-SARS), low energy electron diffraction (LEED) and Auger electron spectroscopy (AES). After heating to 650 K of the potassium saturated surface the formation of a p(3 × 3) potassium superstructure was observed by LEED. TOF-SARS experiments ruled out the adsorption of potassium in the on-top, bridge and four-fold hollow site. The only site which is in agreement with all experimental results is the substitutional site where K replaces an Fe atom of the topmost layer of the crystal. This is the first time a substitutional adsorption site has been found on a bcc surface. On an fcc surface such an adsorption site has been found recently for adsorption of sodium and potassium on Al(111).  相似文献   
8.
We investigated site specific reactivity of the α-Cu-Al(17 at.%)(1 0 0) alloy surface versus that of Al and Cu by measuring neutralisation of Li+ ions. Experiments show that Li+ neutralisation on the α-CuAl(1 0 0) alloy surface does not occur efficiently on Al and is somewhat more efficient on Cu as compared to a pure Cu sample, indicating depletion of electron density on Al and transfer to neighboring Cu. It can thus be concluded that Cu sites in presence of Al are more reactive in the sense that processes involving electron capture from the surface would proceed more efficiently on these.  相似文献   
9.
PdCuAu ternary alloy samples with different composition were synthesized on top of ZrO2‐modified porous stainless steel disks by the sequential electroless deposition technique. The structure, morphology and bulk composition of the samples were characterized by X‐ray diffraction (XRD), scanning electron microscopy and energy dispersive X‐ray spectroscopy (EDX). Complete alloy formation with a pure fcc phase for the Pd71Cu26Au3, Pd70Cu25Au5 and Pd67Cu24Au9 samples and a bcc structure for the Pd62Cu36Au2 and Pd60Cu37Au3 samples were obtained upon annealing at 500 °C for 120 h as revealed by XRD. A combination of low‐energy ion scattering (LEIS) and X‐ray photoelectron spectroscopy (XPS) was used to investigate the surface properties of the PdCuAu alloys. XPS results confirmed alloy formation under the annealing conditions. XPS analysis also revealed that the near‐surface regions of the alloys became enriched in Pd with respect to the bulk composition determined by EDX. In contrast, LEIS and angle‐resolved XPS analyses showed that the top‐most surface layers in all samples were copper‐rich compared with the bulk composition. This high Cu surface concentration could impart resistance to bulk sulfide formation to the PdCuAu alloy membranes. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
10.
Small Pd clusters Pdn (n = 1, 4, 7, 10, 13) deposited on alumina/NiAl(110) at room temperature were examined by X-ray photoelectron spectroscopy (XPS), as-deposited and after exposure to O2 at temperatures ranging from 100 to 500 K. After O2 exposure at 100 K, the Pd clusters showed XPS shifts indicative of oxidation. The exception was Pd4, which did not oxidize under any conditions. The inertness of Pd4/alumina/NiAl(110) appears to be correlated with a significantly higher-than-expected Pd 3d binding energy, which we attribute to a particularly stable valence shell. None of the clusters examined oxidized during O2 exposures at 300 K or above, but He+ scattering showed that oxygen was bound on the cluster surfaces. Upon heating, all the oxygen associated with these small clusters appeared to spill over and react with the alumina/NiAl(110) support.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号