首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
物理学   4篇
  2012年   3篇
  2011年   1篇
排序方式: 共有4条查询结果,搜索用时 0 毫秒
1
1.
Deep level transient spectroscopy (DLTS) and Laplace-DLTS (L-DLTS) have been used to investigate defects in an n-type GaAs before and after exposure to a dc hydrogen plasma (hydrogenation). DLTS revealed the presence of three prominent electron traps in the material in the temperature range 20-300 K. However, L-DLTS with its higher resolution enabled the splitting of two narrowly spaced emission rates. Consequently four electron traps at, EC—0.33 eV, EC—0.36 eV, EC—0.38 eV and EC—0.56 eV were observed in the control sample. Following hydrogenation, all these traps were passivated with a new complex (presumably the M3), emerging at EC—0.58 eV. Isochronal annealing of the passivated material between 50 and 300 °C, revealed the emergence of a secondary defect, not previously observed, at EC—0.37 eV. Finally, the effect of hydrogen passivation is completely reversed upon annealing at 300 °C, as all the defects originally observed in the reference sample were recovered.  相似文献   
2.
Defects created by a dc hydrogen plasma have been compared to those observed in n-GaAs exposed to an inductively coupled (ICP) Ar plasma. The reference sample (in the case of H-plasma treated material) contained two prominent native deep level electron traps, possibly M4 and EC−0.56 eV, which were both passivated by hydrogen. Plasma treatment also resulted in the formation of a defect observed at 0.58 eV (M3) below the conduction band. This defect transforms back into what is believed to be M4 when annealed at 350 K for 3 h under reverse bias. These two defects compare well with two similar defects observed in the Ar ICP treated samples also showing metastable behavior. Additionally, the electrical characterization of Schottky barrier diodes on n-GaAs, prior to and after hydrogen passivation shows that, depending on the plasma conditions, the plasma ions significantly damage the surface resulting in poor rectifying contacts. The damage is considerably reversed/repaired upon annealing between the room temperature and 573 K (300 °C).  相似文献   
3.
Bulk antimony doped germanium (n-Ge) has been exposed to a dc–hydrogen plasma. Capacitance–voltage depth profiles revealed extensive near surface passivation of the shallow donors as evidenced by ∼a 1.5 orders of magnitude reduction in the free carrier concentration up to depth of ∼3.2 μm. DLTS and Laplace-DLTS revealed a prominent electron trap 0.30 eV below the conduction (EC –0.30 eV). The concentration of this trap increased with plasma exposure time. The depth profile for this defect suggested a uniform distribution up to 1.2 μm. Annealing studies show that this trap, attributed to a hydrogen-related complex, is stable up to 200 °C. Hole traps, or vacancy-antimony centers, common in this material after high energy particle irradiation, were not observed after plasma exposure, an indication that this process does not create Frenkel (VI) pairs.  相似文献   
4.
Ruthenium (Ru) Schottky contacts were fabricated on n-Ge (1 0 0) by electron beam deposition. Current–voltage (I–V), deep level transient spectroscopy (DLTS), and Laplace-DLTS techniques were used to characterise the as-deposited and annealed Ru/n-Ge (1 0 0) Schottky contacts. The variation of the electrical properties of the Ru samples annealed between 25 °C and 575 °C indicates the formation of two phases of ruthenium germanide. After Ru Schottky contacts fabrication, an electron trap at 0.38 eV below the conduction band with capture cross section of 1.0×10−14 cm−2 is the only detectable electron trap. The hole traps at 0.09, 0.15, 0.27 and 0.30 eV above the valence band with capture cross sections of 7.8×10−13 cm−2, 7.1×10−13 cm−2, 2.4×10−13 cm−2 and 6.2×10−13 cm−2, respectively, were observed in the as-deposited Ru Schottky contacts. The hole trap H(0.30) is the prominent single acceptor level of the E-centre, and H(0.09) is the third charge state of the E-centre. H(0.27) shows some reverse annealing and reaches a maximum concentration at 225 °C and anneals out after 350 °C. This trap is strongly believed to be V–Sb2 complex formed from the annealing of V–Sb defect centre.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号