首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   2篇
化学   1篇
物理学   4篇
  2012年   2篇
  2011年   1篇
  2006年   1篇
  2005年   1篇
排序方式: 共有5条查询结果,搜索用时 15 毫秒
1
1.
铁电SBN薄膜电光系数的测量及其在波导中的应用   总被引:2,自引:0,他引:2  
利用溶胶-凝胶法在MgO(001)衬底上获得C轴择优取向的铁电铌酸锶钡(SBN)薄膜,主要介绍MgO(001)衬底上SBN60薄膜及掺入的K离子与Nb离子摩尔比例为1:3的SBN60薄膜横向电光系数r51的测量,实验测得不掺K的SBN60薄膜r51值为37.6pm/V,掺K的r51值为58.5pm/V。并由此设计一种基于MgO(001)衬底上的马赫一曾德尔型SBN60薄膜波导调制器,计算出在633nm时,掺K比例为1:3的此种波导调制器半波调制电压值为10V,不掺K的半波电压值为16V,结果说明掺入K离子能增加薄膜的横向电光系数并有效的减少波导的半波调制电压。  相似文献   
2.
Ba0.6Sr0.4TiO3 thin films doped with K were deposited on Pt/Ti/SiO2/Si substrates by chemical solution deposition method. The structure, surface morphology, and dielectric and tunable properties of Ba0.6Sr0.4TiO3 thin films have been studied in detail. The K content in Ba0.6Sr0.4TiO3 thin films has a strong influence on the material's properties including surface morphology, dielectric and tunable properties. It is found that the Curie temperature of K-doped Ba0.6Sr0.4TiO3 films shifts to higher values compared with that of undoped Ba0.6Sr0.4TiO3 thin films, which leads to a dielectric enhancement of K-doped Ba0.6Sr0.4TiO3 films at room temperature. At the optimized content of 0.02 mol, the dielectric loss tangent is reduced significantly from 0.057 to 0.020. Meanwhile, the tunability is enhanced obviously from 26% to 48% at the measured frequency of 1 MHz and the maximum value of the figure of merit is 23.8. This suggests that such films have potential applications for tunable devices.  相似文献   
3.
In this paper, we report the synthesis, crystal structure and electrical transport properties of new K-doped Ba3CaNb2O9 (BCN) and investigate their chemical stability in H2O and pure CO2 at elevated temperature. The powder X-ray diffraction (PXRD) of Ba2.5K0.5CaNb2O9  δ, Ba2.25K0.75CaNb2O9 − δ, Ba2KCaNb2O9 − δ, and Ba1.75K1.25CaNb2O9 − δ showed the formation of a single-phase double perovskite (A3BB/2O9)-like cell with a lattice constant of a ∼ 2ap (where ap is a simple perovskite cell of ∼ 4 Å). Perovskite-like structure was found to be retained after treating with CO2 at 700 °C and also after boiling H2O for 120 h. The lattice constant of CO2 and H2O treated samples was found to be comparable to that of the corresponding as-prepared compound. The total electrical conductivity of all the investigated K-doped BCN increases with increasing K content in BCN in various atmospheres, including air, dry H2, wet N2 and wet H2. The electrical conductivity in dry and wet H2 atmospheres was found to be higher than that of air in the temperature range of 300-700 °C, while in wet N2 a slightly lower value was observed. Among the compounds investigated in the present study Ba1.75K1.25CaNb2O9 − δ showed the highest total electrical conductivity of 1 × 10− 3 S/cm in dry H2 at 700 °C with an activation energy of 1.28 eV in the temperature range of 300-700 °C.  相似文献   
4.
Ba0.6Sr0.4 TiO3 thin films doped with K were deposited on Pt/Ti/SiO2 /Si substrates by the chemical solution deposition method. The structure, surface morphology and the dielectric and tunable properties of Ba0.6Sr0.4 TiO 3 thin films have been studied in detail. The K content in Ba0.6Sr0.4TiO3 thin films has a strong influence on the material’s properties including surface morphology and the dielectric and tunable properties. It was found that the Curie temperature of K-doped Ba0.6Sr0.4 TiO3 films shifts to a higher value compared with that of undoped Ba0.6Sr0.4TiO3 thin films, which leads to a dielectric enhancement of K-doped Ba0.6Sr0.4 TiO3 films at room temperature. At the optimized content of 0.02 mol, the dielectric loss tangent is reduced significantly from 0.057 to 0.020. Meanwhile, the tunability is enhanced obviously from 26% to 48% at the measured frequency of 1 MHz and the maximum value of the figure of merit is 23.8. This suggests that such films have potential applications for tunable devices.  相似文献   
5.
Garnet-structure related metal oxides with the nominal chemical composition of Li5La3Nb2O12, In-substituted Li5.5La3Nb1.75In0.25O12 and K-substituted Li5.5La2.75K0.25Nb2O12 were prepared by solid-state reactions at 900, 950, and 1000 °C using appropriate amounts of corresponding metal oxides, nitrates and carbonates. The powder XRD data reveal that the In- and K-doped compounds are isostructural with the parent compound Li5La3Nb2O12. The variation in the cubic lattice parameter was found to change with the size of the dopant ions, for example, substitution of larger In3+(rCN6: 0.79 Å) for smaller Nb5+ (rCN6: 0.64 Å) shows an increase in the lattice parameter from 12.8005(9) to 12.826(1) Å at 1000 °C. Samples prepared at higher temperatures (950, 1000 °C) show mainly bulk lithium ion conductivity in contrast to those synthesized at lower temperatures (900 °C). The activation energies for the ionic conductivities are comparable for all samples. Partial substitution of K+ for La3+ and In3+ for Nb5+ in Li5La3Nb2O12 exhibits slightly higher ionic conductivity than that of the parent compound over the investigated temperature regime 25-300 °C. Among the compounds investigated, the In-substituted Li5.5La3Nb1.75In0.25O12 exhibits the highest bulk lithium ion conductivity of 1.8×10−4 S/cm at 50 °C with an activation energy of 0.51 eV. The diffusivity (“component diffusion coefficient”) obtained from the AC conductivity and powder XRD data falls in the range 10−10-10−7 cm2/s over the temperature regime 50-200 °C, which is extraordinarily high and comparable with liquids. Substitution of Al, Co, and Ni for Nb in Li5La3Nb2O12 was found to be unsuccessful under the investigated conditions.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号