首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   34606篇
  免费   3486篇
  国内免费   4075篇
化学   28791篇
晶体学   449篇
力学   1652篇
综合类   226篇
数学   3514篇
物理学   7535篇
  2024年   46篇
  2023年   371篇
  2022年   813篇
  2021年   971篇
  2020年   1190篇
  2019年   1136篇
  2018年   1003篇
  2017年   1213篇
  2016年   1360篇
  2015年   1254篇
  2014年   1552篇
  2013年   2538篇
  2012年   1959篇
  2011年   2205篇
  2010年   1815篇
  2009年   2252篇
  2008年   2067篇
  2007年   2068篇
  2006年   1893篇
  2005年   1737篇
  2004年   1771篇
  2003年   1383篇
  2002年   1659篇
  2001年   982篇
  2000年   811篇
  1999年   678篇
  1998年   603篇
  1997年   521篇
  1996年   575篇
  1995年   533篇
  1994年   499篇
  1993年   352篇
  1992年   362篇
  1991年   224篇
  1990年   173篇
  1989年   179篇
  1988年   180篇
  1987年   138篇
  1986年   109篇
  1985年   86篇
  1984年   92篇
  1983年   36篇
  1982年   85篇
  1981年   104篇
  1980年   117篇
  1979年   124篇
  1978年   97篇
  1977年   74篇
  1976年   67篇
  1973年   31篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
Favipiravir is a potential antiviral medication that has been recently licensed for Covid-19 treatment. In this work, a gadolinium-based magnetic ionic liquid was prepared and used as an extractant in dispersive liquid–liquid microextraction (DLLME) of favipiravir in human plasma. The high enriching ability of DLLME allowed the determination of favipiravir in real samples using HPLC/UV with sufficient sensitivity. The effects of several variables on extraction efficiency were investigated, including type of extractant, amount of extractant, type of disperser and disperser volume. The maximum enrichment was attained using 50 mg of the Gd-magnetic ionic liquid (MIL) and 150 μl of tetrahydrofuran. The Gd-based MIL could form a supramolecular assembly in the presence of tetrahydrofuran, which enhanced the extraction efficiency of favipiravir. The developed method was validated according to US Food and Drug Administration bioanalytical method validation guidelines. The coefficient of determination was 0.9999, for a linear concentration range of 25 to 1.0 × 105 ng/ml. The percentage recovery (accuracy) varied from 99.83 to 104.2%, with RSD values (precision) ranging from 4.07 to 11.84%. The total extraction time was about 12 min and the HPLC analysis time was 5 min. The method was simple, selective and sensitive for the determination of favipiravir in real human plasma.  相似文献   
2.
Amlexanox, an anti-inflammatory and anti-allergic agent, has been widely used clinically for the treatment of canker sores, asthma, and allergic rhinitis. Recently, amlexanox has received considerable attention in curing nonalcoholic fatty liver diseases and hepatitis virus infection. Herein, we first established a sensitive high-performance liquid chromatography-tandem mass spectrum (LC–MS/MS) method for the determination of amlexanox in rat plasma. Propranolol was used as the internal standard (IS). Using a simple protein precipitation method, the amlexanox and IS were separated with Capcell Pak C18 column (2.0 × 50 mm, 5 μm) and eluted with water and acetonitrile each containing 0.1% formic acid using gradient elution condition at a flow rate of 0.4 mL·min−1. Amlexanox and IS were detected by a triple quadrupole mass in multiple reactive monitoring (MRM) under the transitions of m/z 299.2 → 281.2 and m/z 259.9 → 116.1 with positive electrospray ionization, respectively. The calibration curves of amlexanox were established with the range of 50 to 2000 ng·mL−1 (r2 > 0.99). The validation method consisted of selectivity, accuracy, precision, carryover effect, matrix effect, recovery, dilution effect, and stability. The fully validated method was successfully applied to the pharmacokinetic study of amlexanox in Wistar rats.  相似文献   
3.
In the pursuit to enlarge the library of polyimide materials for energy applications, new polyimide/MWCNTs composite films have been developed by MWCNTs-assisted polycondensation reaction of a hydroxyl and triphenylmethane-containing diamine with benzophenone tetracarboxylic dianhydride targeting to highlight their electrical storage capability as flexible electrodes in micro-supercapacitors (mSCs). The Fourier-transform infrared spectroscopy, proton nuclear magnetic resonance, UV–vis, fluorescence, and Raman spectroscopies were used to demonstrate the evolution of interfacial interactions between MWCNTs and the precursors (diamine monomer and intermediate polyamidic acid) and polyimide matrix that proved to be the origin of MWCNTs homogeneous dispersion. Thus, composite films incorporating 1, 3, 5, and 10 w.t.% MWCNTs were obtained and thoroughly investigated with regard to their morphology, mechanical behavior, thermal stability, and electrical conductivity. The electrochemical performance of these composites was first analyzed in a classical three-electrode cell by cyclic voltammetry and galvanostatic charge-discharge in both aqueous and organic electrolyte systems. By far, the best electrical storage capacity was obtained with the composite polyimide film containing 10% MWCNTs that was further used as both active material and current collector in a flexible symmetric mSC realized by a straightforward and low-cost procedure. In the attempt to better exploit the advantages of this composite film, it was layered with a graphite-containing paint and tested as an electrode in a flexible mSC, which provided satisfactory results. To our knowledge, this is the first report on the electrical charge storage capability of a polyimide/MWCNTs free-standing film as a flexible electrode in mSCs, which do not require time- and resource-consuming processing steps.  相似文献   
4.
Employing radical bridges between anisotropic metal ions has been a viable route to achieve high-performance single-molecule magnets (SMMs). While the bridges have been mainly considered for their ability to promote exchange interactions, the crystal-field effect arising from them has not been taken into account explicitly. This lack of consideration may distort the understanding and limit the development of the entire family. To shed light on this aspect, herein we report a theoretical investigation of a series of N -radical-bridged diterbium complexes. It is found that while promoting strong exchange coupling between the terbium ions, the N -radical induces a crystal field that interferes destructively with that of the outer ligands, and thus reduces the overall SMM behavior. Based on the theoretical results, we conclude that the SMM behavior in this series could be further maximized if the crystal field of the outer ligands is designed to be collinear with that of the radical bridge. This conclusion can be generalized to all exchange-coupled SMMs.  相似文献   
5.
3,4-Difluorobenzyl(1-ethyl-5-(4-((4-hydroxypiperidin-1-yl)-methyl)thiazol-2-yl)-1H-indol-3-yl)carbamate (NAI59), a small molecule with outstanding therapeutic effectiveness to anti-pulmonary fibrosis, was developed as an autotaxin inhibitor candidate compound. To evaluate the pharmacokinetics and plasma protein binding of NAI59, a UPLC–MS/MS method was developed to quantify NAI59 in plasma and phosphate-buffered saline. The calibration curve linearity ranged from 9.95 to 1990.00 ng/mL in plasma. The accuracy was −6.8 to 5.9%, and the intra- and inter-day precision was within 15%. The matrix effect and recovery, as well as dilution integrity, were within the criteria. The chromatographic and mass spectrometric conditions were also feasible to determine phosphate-buffered saline samples, and it has been proved that this method exhibits good precision and accuracy in the range of 9.95–497.50 ng/mL in phosphate-buffered saline. This study is the first to determine the pharmacokinetics, absolute bioavailability, and plasma protein binding of NAI59 in rats using this established method. Therefore, the pharmacokinetic profiles of NAI59 showed a dose-dependent relationship after oral administration, and the absolute bioavailability in rats was 6.3%. In addition, the results of protein binding showed that the combining capacity of NAI59 with plasma protein attained 90% and increased with the increase in drug concentration.  相似文献   
6.
7.
The PeakForce Quantitative Nanomechanical Mapping based on atomic force microscope (AFM) is employed to first visualize and then quantify the elastic properties of a model nitrile rubber/poly(vinyl chloride) (NBR/PVC) blend at the nanoscale. This method allows us to consistently observe the changes in mechanical properties of each phase in polymer blends. Beyond measuring and discriminating elastic modulus and adhesion forces of each phase, we tune the AFM tips and the peak force parameters in order to reliably image samples. In view of viscoelastic difference in each phase, a three‐phase coexistence of an unmixed NBR phase, the mixed phase, and PVC microcrystallites is directly visualized in NBR/PVC blends. The nanomechanical investigation is also capable of recognizing the crosslinked rubber phase in cured rubber. The contribution of the mixed phase was quantified and it was found that the mechanical properties of blends are mainly determined by the homogeneity and stiffness of the mixed phase. This study furthers our understanding the structure–mechanical property relationship of thermoplastic elastomers, which is important for their potential design and applications. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 662–669  相似文献   
8.
In this paper, we present an approach of dynamic mesh adaptation for simulating complex 3‐dimensional incompressible moving‐boundary flows by immersed boundary methods. Tetrahedral meshes are adapted by a hierarchical refining/coarsening algorithm. Regular refinement is accomplished by dividing 1 tetrahedron into 8 subcells, and irregular refinement is only for eliminating the hanging points. Merging the 8 subcells obtained by regular refinement, the mesh is coarsened. With hierarchical refining/coarsening, mesh adaptivity can be achieved by adjusting the mesh only 1 time for each adaptation period. The level difference between 2 neighboring cells never exceeds 1, and the geometrical quality of mesh does not degrade as the level of adaptive mesh increases. A predictor‐corrector scheme is introduced to eliminate the phase lag between adapted mesh and unsteady solution. The error caused by each solution transferring from the old mesh to the new adapted one is small because most of the nodes on the 2 meshes are coincident. An immersed boundary method named local domain‐free discretization is employed to solve the flow equations. Several numerical experiments have been conducted for 3‐dimensional incompressible moving‐boundary flows. By using the present approach, the number of mesh nodes is reduced greatly while the accuracy of solution can be preserved.  相似文献   
9.
量子自旋液体是最近几年刚被人们证实除铁磁体、反铁磁体之外的第三种磁性类型,因其有望解释高温超导的运行机制、改变计算机硬盘信息存储方式而在物理、材料等领域备受关注。自旋阻挫作为量子自旋液体的最小单元可能是解开量子自旋液体诸多问题的钥匙,所以在磁学、电学研究领域再一次成为人们研究的热点。基于文献报道的三核铜配合物[Cu3(μ3-OH)(μ-OPz)3(NO3)2(H2O)2]·CH3OH(1),我们合成了三维金属有机框架配合物{[Ag(HOPz)Cu3(μ3-OH)(NO3)3(OPz)2Ag(NO3)]·6H2O}n(2)(HOPz=甲基(2-吡嗪基)酮肟),并从自旋阻挫的角度对二者磁性质进行对比和详细分析。磁化率数据表明自旋间有很强的反铁磁相互作用和反对称交换。通过包含各向同性和反对称交换的哈密顿算符对两者磁学数据进行拟合并研究其磁构关系,所获最佳拟合参数为:配合物1:Jav=-426 cm^-1,g⊥=1.83,g∥=2.00;配合物2:Jav=-401 cm^-1,g⊥=1.85,g∥=2.00。  相似文献   
10.
In this communication, we report the synthesis of small‐sized (<10 nm), water‐soluble, magnetic nanoparticles (MNPs) coated with polyhedral oligomeric silsesquioxanes (POSS), which contain either polyethylene glycol (PEG) or octa(tetramethylammonium) (OctaTMA) as functional groups. The POSS‐coated MNPs exhibit superparamagnetic behavior with saturation magnetic moments (51–53 emu g?1) comparable to silica‐coated MNPs. They also provide good colloidal stability at different pH and salt concentrations, and low cytotoxicity to MCF‐7 human breast epithelial cells. The relaxivity data and magnetic resonance (MR) phantom images demonstrate the potential application of these MNPs in bioimaging.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号