首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1495篇
  免费   49篇
  国内免费   421篇
化学   1596篇
晶体学   42篇
力学   34篇
综合类   1篇
数学   6篇
物理学   286篇
  2024年   1篇
  2023年   10篇
  2022年   28篇
  2021年   26篇
  2020年   31篇
  2019年   29篇
  2018年   42篇
  2017年   48篇
  2016年   62篇
  2015年   73篇
  2014年   80篇
  2013年   85篇
  2012年   240篇
  2011年   139篇
  2010年   119篇
  2009年   155篇
  2008年   122篇
  2007年   146篇
  2006年   96篇
  2005年   92篇
  2004年   110篇
  2003年   63篇
  2002年   33篇
  2001年   26篇
  2000年   16篇
  1999年   17篇
  1998年   17篇
  1997年   7篇
  1996年   14篇
  1995年   8篇
  1994年   3篇
  1993年   4篇
  1992年   6篇
  1991年   4篇
  1990年   1篇
  1989年   1篇
  1988年   3篇
  1986年   1篇
  1985年   3篇
  1984年   1篇
  1981年   1篇
  1980年   1篇
  1979年   1篇
排序方式: 共有1965条查询结果,搜索用时 15 毫秒
1.
Nanocrystalline FeS2 cathode material of lithium cell was synthesized from cheap materials of FeSO4, Na2S2O3, and sulfur by a hydrothermal process. The scanning electron microscopy analysis showed the obtained material was nano-sized, about 500 nm. The X-ray powder diffraction analysis showed that the synthetic FeS2 material had two phases of the crystalline structure, pyrite and marcasite. The phase of marcasite seems to have no negative effect on the electrochemical performance of the material. The synthetic FeS2 showed a significant improvement of electrochemical performance for Li/FeS2 cells.  相似文献   
2.
Understanding the luminescence of ZnO is very important for some applications. In spite of the many studies carried out, there are still some points concerning the origin of some of the luminescence emissions in ZnO crystals that require additional study; in particular, the role of extended defects remains to be a matter of controversy. We present here a cathodoluminescence analysis of the defects generated by Vickers indentation in hydrothermal HTT crystals. Special emphasis was paid to the luminescence band peaking around 3.3 eV. The origin of this band is a matter of controversy, since it has been related to different causes, extended defects being one of the candidates for this emission. The CL images were acquired around crystal defects. It is observed that the 3.3 eV emission is enhanced around the crystal defects; though it is also observed, but weaker, out of the defect regions, which suggests that there exist two luminescence emissions peaking very close to 3.3 eV. The two emissions, one related to structural defects and the other to the LO phonon replica of the free excitonic band, appear very close each other and their relative intensity should determine the shape of the spectrum.  相似文献   
3.
The hydrothermal synthesis and magnetic entropy change for the perovskite manganite La0.5Ca0.3Sr0.2MnO3 have been studied. The La0.5Ca0.3Sr0.2MnO3 can be produced as phase-pure, crystalline powders in one step from solutions of metal salts in aqueous potassium hydroxide solution at a temperature of 513 K in 72 h. Scanning electron microscopy shows that the materials are made up of cuboid-shaped particles in typical dimension of 4.0×2.5×1.6 μm. Heat treatment can improve the magnetocaloric effect for the hydrothermal sample. The maximum magnetic entropy change ΔSM for the as-prepared sample is 0.88 J kg−1 K−1 at 315 K for a magnetic field change of 2.0 T. It increases to 1.52 J kg−1 K−1, near its Curie temperature (317 K) by annealing the sample at 1473 K for 6 h. The hydrothermal synthesis method is a feasible route to prepare high-quality perovskite material for magnetic refrigeration application.  相似文献   
4.
IntroductionThe interest in polyoxometalates that are widelyused in medical chemistry, catalyst reactions, and ma-terial sciences stems from their complicated aggregatesformed by means of corner-, edge- and face-sha-ring[1—4]. The exploitation of new str…  相似文献   
5.
Two hydrated uranyl arsenates and a uranyl phosphate were synthesized by hydrothermal methods in the presence of amine structure-directing agents and their structures determined: (N2C6H14)[(UO2)(AsO4)]2(H2O)3, DabcoUAs, {NH(C2H5)3}[(UO2)2(AsO4)(AsO3OH)], TriethUAs, and (N2C4H12)(UO2)[(UO2)(PO4)]4(H2O)2, PiperUP. Intensity data were collected at room temperature using MoKα X-radiation and a CCD-based area detector. The crystal structures were refined by full-matrix least-squares techniques on the basis of F2 to agreement indices (DabcoUAs, TriethUAs, PiperUP) wR2=5.6%, 8.3%, 7.2% for all data, and R1=2.9%, 3.3%, 4.0%, calculated for 1777, 5822, 9119 unique observed reflections (|Fo|?4σF), respectively. DabcoUAs is monoclinic, space group C2/m, Z=2, a=18.581(1), b=7.1897(4), c=7.1909(4) Å, β=102.886(1)°, V=936.43(9) Å3, Dcalc=3.50 g/cm3. TriethUAs is monoclinic, space group P21/n, Z=4, a=9.6359(4), b=18.4678(7), c=10.0708(4) Å, β=92.282(1)°, V=1790.7(1) Å3, Dcalc=3.41 g/cm3. PiperUP is monoclinic, space group Pn, Z=2, a=9.3278(4), b=15.5529(7), c=9.6474(5) Å, β=93.266(1)°, V=1397.3(1) Å3, Dcalc=4.41 g/cm3. The structure of DabcoUAs contains the autunite-type sheet formed by the sharing of vertices between uranyl square bipyramids and arsenate tetrahedra. The triethylenediammonium cations are located in the interlayer along with two H2O groups and are disordered. Both TriethUAs and PiperUP contain sheets formed of uranyl pentagonal bipyramids and tetrahedra (arsenate and phosphate, respectively) with the uranophane sheet-anion topology. In TriethUAs, triethlyammonium cations are located in the interlayer. In PiperUP, the sheets are connected by a uranyl pentagonal bipyramid that shares corners with phosphate tetrahedra of adjacent sheets, resulting in a framework with piperazinium cations and H2O groups in the cavities of the structure.  相似文献   
6.
MgO•3B2O3-18%MgSO4-H2O过饱和溶液析出固相组成和机理研究   总被引:2,自引:0,他引:2  
闫长领  卢雁  周建国 《物理化学学报》2005,21(10):1161-1163
针对青藏高原盐湖卤水析盐过程的特点, 模拟合成MgO•3B2O3-18%MgSO4-H2O过饱和溶液, 在150 ℃水热条件下对析出固相进行研究. 用化学分析方法、X射线衍射、红外光谱进行物相鉴定. 提出了可能的结晶反应机理, 分析了水热温度对析出物相的影响及MgSO4对硼酸镁盐的盐溶效应随水热温度的变化.  相似文献   
7.
Three novel hetero-polyoxovanadates, [Cd(2,2′-bpy)3]{[Cd(dien)]As8V14O42(H2O)} (1, 2,2′-bpy=2,2′-bipyridine, and dien=diethylenetriamine), [Zn(2,2′-bpy)2]2[As8V14O42(H2O)]·H2O (2) and [Ni(en)2]3[As8V14O42(HPO3)]·4H2O (3, en=ethlenediamine), were hydrothermally synthesized and characterized by single-crystal X-ray diffraction. Crystal data: 1 monoclinic, P2(1)/n, a=15.1728(5), b=19.2863(5), , β=96.005(2)°, Z=4. 2, orthorhombic, P2(1)2(1)2(1), a=12.1270(3), b=15.8678(8), , Z=4. 3, triclinic, , a=12.9340(3), b=13.4130(3), , α=87.170(3)°, β=77.517(3)°, γ=68.480(3)°, Z=2. Compounds 1-3 are all made of the {As8V14O42} shells linked by corresponding transition metal complexes into extended structures. Compound 1 and 2 present 1-D wave-like and tubular structures, respectively, while compound 3 exhibits a novel 2-D structure containing interwinding puckery layers. Variable temperature susceptibility measurements demonstrate the presence of antiferromagnetic interaction between VIV cations in 1 and 2.  相似文献   
8.
The hydrothermal syntheses of the alkali metal molybdenum bronzes from starting solids (HxMoO3) with structural affinities to the desired products were investigated. Single-phase potassium blue and red bronzes were prepared by the hydrothermal treatments at around 430 K, and characterized by powder X-ray diffraction, IR spectroscopy, and SEM. The formation processes of these two bronzes during the hydrothermal treatments were found to differ. The blue bronze was formed by a structure-inheriting solid-state route from HxMoO3 with x<0.3, whereas the red bronze was formed for x>0.3 through a solution dissolution/deposition route via the formation of MoO3+MoO2.  相似文献   
9.
Two hydrated uranyl arsenates, Cs2(UO2)[(UO2)(AsO4)]4(H2O)2 (CsUAs) and Rb2(UO2)[(UO2)(AsO4)]4(H2O)4.5 (RbUAs), were synthesized by hydrothermal methods. Intensity data were collected at room temperature using MoKα radiation and a CCD-based area detector. The crystal structure of RbUAs was solved by direct methods, whereas the structure model of the phosphate Cs2(UO2)[(UO2)(PO4)]4(H2O)2 was used for CsUAs; both were refined by full-matrix least-squares techniques on the basis of F2 to agreement indices (CsUAs, RbUAs) wR2=0.061,0.041, for all data, and R1=0.032,0.021, calculated for 5098, 4991 unique observed reflections (|Fo|>4σF), respectively. The compound CsUAs is orthorhombic, space group Cmc21, Z=4, a=15.157(2), b=14.079(2), c=13.439(2) Å, V=2867.9(1) Å3. RbUAs is monoclinic, space group C2/m, Z=4, a=13.4619(4), b=15.8463(5), c=14.0068(4) Å, β=92.311(1)°, V=2985.52(2) Å3. The structures consist of sheets of arsenate tetrahedra and uranyl pentagonal bipyramids, with composition [(UO2)(AsO4)], that are topologically identical to the uranyl silicate sheets in uranophane-beta. These sheets are connected by a uranyl pentagonal bipyramid in the interlayer that shares corners with two arsenate tetrahedra on each of two adjacent sheets and whose fifth equatorial vertex is an H2O group, resulting in an open framework with alkali metal cations in the larger cavities of the structures. CsUAs is isostructural with its phosphate analogue, and has two Cs atoms and a H2O group in its structural cavities. RbUAs is not isostructural with its phosphate analogue, although it has a homeotypic framework. Its structural cavities are occupied by three Rb atoms and four H2O groups; one Rb position and three of the interstitial H2O groups are half-occupied. The partial occupancies of these positions probably result from the accommodation of the larger As atoms (relative to P) in the framework and resultant larger cavities.  相似文献   
10.
A new layered cobalt-zinc phosphite, Co(H2O)4Zn4(HPO3)6·C2N2H10 has been synthesized in the presence of ethylenediamine as the structure-directing agent. The compound crystallizes in the monoclinic system, space group Cc (No. 9), a=18.2090(8), b=9.9264(7), c=15.4080(7) Å, β=114.098(4)°, V=2542.3(2) Å3, Z=4, R=0.0323, wR=0.0846. The structure consists of ZnO4 tetrahedra, CoO6 octahedra and HPO3 pseudopyramids through their vertices forming bimetallic phosphite layers parallel to the ab plane. Organic cations, which reside between the inorganic layers, are mobile and can be exchanged by NH4+ cations without the collapse of the framework.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号