首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
化学   1篇
物理学   1篇
  2013年   1篇
  2012年   1篇
排序方式: 共有2条查询结果,搜索用时 0 毫秒
1
1.
The geometry, electronic structure, and catalytic properties for CO oxidation of Pt atom supported on pri-graphene (PG), Haeckelite (H), and Stone–Wales-defect-graphene are investigated by density functional theory (DFT) calculations. In contrast to a Pt atom on PG, defective graphene, especially the Haeckelite, strongly stabilises the Pt atom and makes it more positive and thus the CO poisoning. At the same time the catalytic activities are as high as the pristine one. Langmuir–Hinshelwood mechanisms are favoured as the starting state and are followed by the Eley–Rideal reaction. The results indicate the benefit of Haeckelite as a substrate for the Pt atom and validate the reactivity of catalysts on the atomic scale with low cost and high activity.  相似文献   
2.
We present a systematic study of atmospheric chemical vapor deposition growth of carbon nanotubes (CNTs) on patterned, transition metal/GaAs samples employing methane as the carbon feedstock. Controlled CNT growth was found to occur from the exposed metal‐semiconductor interface, rather than from the metal or semiconductor surfaces themselves. A fast sample loading system allowed for a minimization of the exposure to high temperatures, thereby preventing excessive sample damage. The optimum growth temperature for CrNi/GaAs interfaces is 700 °C (at a methane flow rate of 700 sccm). Possible growth scenarios involving the Ni–As–Ga system and its interaction with C is discussed. Raman spectroscopy of the CNTs revealed the presence of pentagon–heptagon defects. Closer analysis of the spectra points towards a mixture of so‐called Haeckelite CNTs. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号