首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   23篇
  免费   0篇
化学   3篇
力学   1篇
物理学   19篇
  2020年   1篇
  2019年   2篇
  2016年   1篇
  2013年   1篇
  2012年   2篇
  2008年   1篇
  2007年   1篇
  2001年   1篇
  1997年   1篇
  1995年   1篇
  1994年   1篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1989年   3篇
  1987年   1篇
  1976年   2篇
排序方式: 共有23条查询结果,搜索用时 31 毫秒
1.
The various approaches to nonequilibrium statistical mechanics may be subdivided into convolution and convolutionless (time-local) ones. While the former, put forward by Zwanzig, Mori, and others, are used most commonly, the latter are less well developed, but have proven very useful in recent applications. The aim of the present series of papers is to develop the time-local picture (TLP) of nonequilibrium statistical mechanics on a new footing and to consider its physical implications for topics such as the formulation of irreversible thermodynamics. The most natural approach to TLP is seen to derive from the Fourier-Laplace transform ) of pertinent time correlation functions, which on the physical sheet typically displays an essential singularity at z= and a number of macroscopic and microscopic poles in the lower half-plane corresponding to long- and short-lived modes, respectively, the former giving rise to the autonomous macrodynamics, whereas the latter are interpreted as doorway modes mediating the transfer of information from relevant to irrelevant channels. Possible implications of this doorway mode concept for socalled extended irreversible thermodynamics are briefly discussed. The pole structure is used for deriving new kinds of generalized Green-Kubo relations expressing macroscopic quantities, transport coefficients, e.g., by contour integrals over current-current correlation functions obeying Hamiltonian dynamics, the contour integration replacing projection. The conventional Green-Kubo relations valid for conserved quantities only are rederived for illustration. Moreover, may be expressed by a Laurent series expansion in positive and negative powers ofz, from which a rigorous, general, and straightforward method is developed for extracting all macroscopic quantities from so-called secularly divergent expansions of as obtained from the application of conventional many-body techniques to the calculation of . The expressions are formulated as time scale expansions, which should rapidly converge if macroscopic and microscopic time scales are sufficiently well separated, i.e., if lifetime (memory) effects are not too large.  相似文献   
2.
The friction at the liquid-solid interfaces is widely involved in various phenomena ranging from nanometer to micrometer scales. By the molecular dynamic(MD)simulation, the friction properties of liquid-solid interfaces at the molecular level are calculated via the Green-Kubo relation. It is found that the system size will influence the value of the friction coefficient, especially for the solid surfaces with the larger polar charge. The value of the friction coefficient decreases with the increase in the system size and converges at large system sizes. The large polar charge will lead to a significant friction coefficient. However, the diffusion of water molecules on this surface is almost a constant, indicating that the diffusion coefficient seems to be independent of the system size and polar charge. This work provides insights for the selection of the system size in modeling the frictional properties of hydrophobic/hydrophilic surfaces.  相似文献   
3.
Abstract

The molecular theory of dense fluids is progressing rapidly and its extension to mixtures is well underway. The purpose of this note is to call attention to a possibly serious difficulty in comparing experimental Henry's constants with those calculated from theory. The difficulty arises because whereas theorists choose temperature and density as independent variables, experimental equilibrium measurements on mixtures are often made along the saturation line where (at fixed composition) temperature and density are not both independent variables. Unless Henry's constants are defined with care, the effect of temperature on Henry's constants calculated from molecular theory may be qualitatively different from that observed.  相似文献   
4.
5.
We consider heat conduction in a periodic body which is composed of finitely many different components. The effective conductivity is represented in terms of skew Brownian motion. The representation formula is a fluctuation-dissipation relation. The dissipation term in this formula is related to the transmission of heat through the surface separating the different components of the body; it is described by the skew reflections of Brownian motion at these surfaces. The problems caused by the discontinuity of the microscopic conductivity are handled in the framework of Dirichlet forms.  相似文献   
6.
In this paper, the diffusion, thermodynamic and thermotransport properties in Cu–Ag liquid alloys are extensively investigated with molecular dynamics over a wide composition and temperature range. The simulations are performed with the most reliable EAM potential. The Green-Kubo formalism is employed for calculating transport properties. It is found that the reduced heat of transport in Cu–Ag is very small (about 0.10?eV in absolute value) and almost temperature independent. Further it is found that the interdiffusion coefficient together with both self-diffusion coefficients are almost composition independent. In Cu–Ag, the thermodynamic factor is found to be less than unity whereas the Manning factor is greater than unity (with significant composition and temperature dependence) and their product is very close to 1.  相似文献   
7.
The short-time behavior of the coherent intermediate scattering function for a fluid of hard-sphere particles is calculated exactly through ordert 4, and the other hydrodynamic correlation functions are calculated exactly through ordert 2. It is shown that for all of the correlation functions considered the Enskog theory gives a fair approximation. Also, the initial time behavior of various Green-Kubo integrands is studied. For the shear-viscosity integrand it is found that at densityn3=0.837 the prediction of the Enskog theory is 32% too low. The initial value of the bulk viscosity integrand is nonzero, in contrast to the Enskog result. The initial value of the thermal conductivity integrand at high densities is predicted well by Enskog theory.  相似文献   
8.
A simple example of a nongradient stochastic interacting particle system is analyzed. In this model, symmetric simple exclusion in one dimension in a periodic environment, the dynamical term in the Green-Kubo formula contributes to the bulk diffusion constant. The law of large numbers for the density field and the central limit theorem for the density fluctuation field are proven, and the Green-Kubo expression for the diffusion constant is computed exactly. The hydrodynamic equation for the model turns out to be linear.  相似文献   
9.
Hydrodynamic excitations in lattice gas cellular automata are described in terms of equilibrium time correlation functions for the local conserved variables. For large space and time scales the linearized hydrodynamic equations are obtained to Navier-Stokes order. Exact expressions for the associated susceptibilities and transport coefficients are identified in terms of correlation functions. The general form of the time correlation functions for conserved densities in the hydrodynamic limit is given and illustrated by some examples suitable for comparison with computer simulation. The transport coefficients are related to time correlation functions for the conserved fluxes in a way analogous to the Green-Kubo expressions for continuous fluids. The general results are applied for a one-component fluid and several types of binary diffusion. Also discussed are the effects of unphysical slow modes such as staggered particle or momentum densities.  相似文献   
10.
The concepts of local temperature and local thermal equilibrium are introduced in the context of lattice gas cellular automata (LGGAs) whose dynamics conserves energy. Green-Kubo expressions for thermal transport coefficients, in particular for the heat conductivity, are derived in a form, equivalent to those for continuous fluids. All thermal transport coefficients are evaluated in Boltzmann approximation as thermal averages of matrix elements of the inverse Boltzmann collision operator, fully analogous to the results for continuous systems, and fully model-independent. The collision operator is expressed in terms of transition probabilities between in- and out-states. Staggered diffusivities arising from spuriously conserved quantities in LGCAs are also calculated. Examples of models with either cubic or hexagonal symmetries are discussed, where particles may or may not have internal energies.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号