首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
化学   1篇
晶体学   3篇
物理学   3篇
  2018年   1篇
  2015年   1篇
  2006年   1篇
  2003年   1篇
  2002年   2篇
  2001年   1篇
排序方式: 共有7条查询结果,搜索用时 62 毫秒
1
1.
S. Delice  E. Bulur 《哲学杂志》2015,95(9):998-1006
Trap centres in gallium sulfide single crystals have been investigated by thermoluminescence measurements in the temperature range of 10–230 K. A curve-fitting method was utilized to evaluate the activation energies (52, 200 and 304 meV) of the revealed three trap centres. The heating rate dependence and trap distribution of the peaks have been studied using experimental techniques based on various heating rates and various illumination temperatures, respectively. An anomalous heating rate dependence of the high-temperature peak was found by carrying out TL measurements with various heating rates between 0.2 and 1.0 K/s. This behaviour was explained on the basis of a semi-localized transition model. Whereas normal heating rate dependence was established for low-temperature peak, that is, the TL intensity of the glow curve decreases and the peak maximum temperature shifts to higher values with increasing the heating rate. Moreover, a quasi-continuous trap distribution with the increase of activation energies from 52 to 90 meV, from 200 to 268 meV and from 304 to 469 meV for the observed three different traps was established employing the various illumination temperatures method.  相似文献   
2.
Photoluminescence (PL) spectra of GaS0.75Se0.25 layered single crystals have been studied in the wavelength region of 500‐850 nm and in the temperature range of 10‐200 K. Two PL bands centered at 527 ( 2.353 eV, A‐band) and 658 nm (1.884 eV, B‐band) were observed at T = 10 K. Variations of both bands have been studied as a function of excitation laser intensity in the range from 8 × 10‐3 to 10.7 W cm‐2. These bands are attributed to recombination of charge carriers through donor‐acceptor pairs located in the band gap. Radiative transitions from shallow donor levels located 0.043 and 0.064 eV below the bottom of conduction band to acceptor levels located 0.088 and 0.536 eV above the top of the valence band are suggested to be responsible for the observed A‐ and B‐bands in the PL spectra, respectively.  相似文献   
3.
The linewidths of Raman‐active intralayer compressional modes in GaS1‐xSex layered mixed crystals (0 ≤ x ≤ 1) have been measured in the 10‐300 K temperature range to study the anharmonic effect as a function of compositional variation and temperature. It was found that the anharmonicity increases with an increase in substitutional disorder. The cubic (three‐phonon) processes with energy conservation is responsible for the anharmonic contribution to the broadening of the intralayer phonon lines with temperature. (© 2003 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   
4.
The geometries and the bonding properties have been predicted for cyclic GaO2 and GaS2 species at density functional theory (DFT), MPn (n=2,3,4 with different substitutions), QCISD(T), and CCSD(T) all‐electron correlation levels with 6‐311+G* basis set. The geometrical optimizations and the harmonic vibrational frequency analysis are performed using DFT and second‐order Møller–Plesset (MP2) methods. The relevant energy quantities are also calibrated at the high‐order electron correlation levels [MP3, MP4, quadratic configuration interaction (QCI), and coupled cluster (CC)]. Each species possesses a 2A2 ground state with a higher energy level 2A1 state. The corresponding state–state separations are about 32 kcal/mol for GaO2 species and about 20 kcal/mol for GaS2 species at the QCISD(T)/6‐311+G* level. The QCISD(T) and CCSD(T) calculations yield dissociation energies of 42.0 and 59.0 kcal/mol for two species, respectively, and other methods yield dissociation energies within ∼5 kcal/mol. Result analysis has indicated that the cyclic GaO2 should be classified as superoxide and the GaS2 species should be classified as supersulfide in their ground state, and those in the excited state (2A1) should not be. However, the cyclic GaS2 (2A2) is less ionic than the GaO2 (2A2) and they are far less ionic than NaO2. © 2001 John Wiley & Sons, Inc. Int J Quant Chem 81: 222–231, 2001  相似文献   
5.
Photoluminescence (PL) measurement has been made on P-doped p-GaS. The 2.35 and 2.12 eV emission bands are observed in the PL spectrum of P-doped sample at 77 K. The temperature dependence of full-width at half-maximum and the shape of the PL spectrum of the 2.12 eV emission band are characterized by the recombination mechanism of the configurational coordinate model. It is found that the 2.12 eV emission band is related to the complex center of vacancy and acceptor due to P atoms. It is found from the presence of the complex center that the P-doped samples include a high concentration of defects or defect complexes.  相似文献   
6.
《Current Applied Physics》2018,18(6):673-680
We have used first-principles calculations to investigate the electronic and optical properties of GaS/GaSe van der Waals heterostructures formed by stacking two-dimensional GaSe and GaSe monolayers. Our findings confirm that the GaS/GaSe heterostructures transform from an indirect to a direct band gap material for the two stackings considered in this study. In addition, we found that the direct band gaps are 1.780 eV and 1.736 eV for AA and AB stacking, respectively. It is observed that the behavior of the optical properties of AA stacking is similar to AB stacking with some differences in details and both heterostructures located in UV range. The refractive index values are 2.21 (AA pattern) and 2.18 (AB pattern) at zero photon energy limit and increase to 2.937 for AA and 2.18 AB patterns and both located in the visible region. More importantly, the GaS/GaSe heterostructures have a variety of extraordinary electronic and optical properties. Accordingly, these heterostructures can be useful for the solar cell, nanoelectronics, and optoelectronic applications.  相似文献   
7.
Systematic dark electrical resistivity and Hall mobility measurements have been carried out in the temperature range 150‐400 K on n‐type GaS0.5Se0.5 layered crystals. The analysis of temperature dependent electrical resistivity and carrier concentration reveals the extrinsic type of conduction with a donor impurity level located at 0.44 eV, donor and acceptor concentrations of 3.4 ×1017 and 4.1×1016 cm‐3, respectively, and an electron effective mass of 0.41 m0. The Hall mobility is limited by the electron‐phonon short‐range interactions scattering at high temperatures combined with the ionized impurity scattering at low temperatures. The electron‐phonon short‐range interactions scattering mobility analysis reveals an electron‐phonon coupling constant of 0.25 and conduction band deformation potential of 5.57 eV/Å.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号