首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
物理学   2篇
  2015年   1篇
  2014年   1篇
排序方式: 共有2条查询结果,搜索用时 46 毫秒
1
1.

Objective

Coronary artery stents are made from metallic mesh and, therefore, to ensure patient safety, these implants must be evaluated to determine risks associated with MRI. Recently, bioabsorbable scaffolds, which have metallic markers, have been developed for use in the coronary arteries. Because of the metallic materials, these implants may present issues for patients undergoing MRI. Therefore, the objective of this investigation was to assess MRI issues (i.e., magnetic field interactions, MRI-related heating, and artifacts at 3 T) for a new bioabsorbable, coronary artery scaffold with metallic markers.

Methods

A bioabsorbable, coronary artery scaffold (Mirage Microfiber Scaffold) underwent assessments for magnetic field interactions, MRI-related heating, and artifacts at 3-Tesla using standard techniques. MRI-related heating was evaluated with the scaffold placed in a gelled-saline-filled phantom and MRI was performed at an MR system reported, whole body averaged SAR of 2.9 W/kg for 15 minutes. Artifacts were characterized using T1-weighted spin echo and gradient echo, pulse sequences.

Results

There were no magnetic field interactions. The highest temperature rise was 1.6 °C (highest background temperature rise, 1.6 °C). Artifacts were relatively small in relation to the size and shape of this coronary artery scaffold. Notably, the lumen of the scaffold could be visualized on the GRE pulse sequence.

Conclusion

The results demonstrated that the coronary artery scaffold is acceptable (or “MR conditional,” using current MRI labeling terminology) for a patient undergoing an MRI procedure at 3 T or less. To our knowledge, this is the first bioabsorbable, coronary artery scaffold that has been evaluated for MRI issues.  相似文献   
2.
定量磁化率成像(QSM)利用一般成像技术舍弃的相位信息得到局部磁场变化特性,通过复杂的场到源反演计算,可直接得到定量的磁化率图,它广泛应用于测量血氧饱和度、脑部微出血、铁沉积、组织钙化等方面.然而,梯度磁场中流动会引起相位错误,并且产生显著的流动伪影,最终得到错误的QSM图像.为了矫正流动的影响,该文在3 T磁共振系统上实现了三维多回波流动补偿梯度回波序列,并用该序列采集流动水模和志愿者颅脑数据.流动水模和颅脑数据均显示,流动补偿能够明显矫正相位错误,消除流动伪影.颅脑横断位QSM结果证明,流动补偿序列可以消除血液流动引起的QSM的错误,提高QSM的准确性.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号