首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   930篇
  免费   36篇
  国内免费   19篇
化学   385篇
晶体学   3篇
力学   429篇
综合类   3篇
数学   27篇
物理学   138篇
  2023年   21篇
  2022年   29篇
  2021年   27篇
  2020年   54篇
  2019年   31篇
  2018年   12篇
  2017年   44篇
  2016年   52篇
  2015年   41篇
  2014年   59篇
  2013年   58篇
  2012年   26篇
  2011年   63篇
  2010年   52篇
  2009年   64篇
  2008年   56篇
  2007年   59篇
  2006年   36篇
  2005年   27篇
  2004年   29篇
  2003年   32篇
  2002年   24篇
  2001年   12篇
  2000年   13篇
  1999年   8篇
  1998年   19篇
  1997年   3篇
  1996年   5篇
  1995年   5篇
  1994年   9篇
  1993年   3篇
  1992年   2篇
  1990年   1篇
  1989年   2篇
  1988年   4篇
  1987年   1篇
  1982年   1篇
  1981年   1篇
排序方式: 共有985条查询结果,搜索用时 31 毫秒
1.
Supramolecular polyurethane ureas are expected to have superior mechanical properties primarily due to the reversible, noncovalent interactions such as hydrogen bonding interactions. We synthesized polyurethane prepolymers from small molecular weight of poly(tetramethylene ether)glycol and isophorone diisocyanates, which were end capped with propylamine to synthesize polyurethane ureas with high contents of urea and urethane groups for hydrogen‐bonding formations to facilitate self‐healing. The effects of polyurethane urea molecular weight (3000 ≤ Mn ≤ 9000), crosslinking, and cutting direction were studied in terms of thermal, mechanical, and morphological properties with an emphasis on the self‐healing efficiency. It was found that the thermal self‐healability was more pronounced as the molecular weight of polyurethane urea decreased, showing a maximum of more than 96% with 3000 Mn when the sample was cut along the stretch direction. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 468–474  相似文献   
2.
Inflation of balloons provides a straightforward way of achieving large biaxial deformations. Previous studies have shown that when a balloon bursts, crack propagation occurs at very high speed – much higher than would be expected from the low strain modulus and elastic wave velocity of the rubber. The present paper is concerned with studies of the deformation and fracture of cylindrical balloons. On inflation, the deformations of such a balloon pass through an unstable region but subsequently increase monotonically with pressure. In this relatively high pressure region, the ratio of the longitudinal and circumferential extension ratios is broadly in accord with expectations from high-strain elasticity theory when the ratio of the corresponding stresses is taken into account. On bursting, crack speeds up to around 300 m/s in this region. It is shown that these speeds are in accord with large increase in incremental moduli for the highly-strained rubber. Marked changes in crack tip profile observed at very high crack speeds are consistent with control of the rate of growth by inertia rather than by the viscoelastic properties of the rubber (as is believed to be the case at lower speeds). Consistent with this, various elastomers having different glass transition temperatures show similar crack growth behaviour in the very high speed region.  相似文献   
3.
A reversibly cross‐linked epoxy resin with efficient reprocessing and intrinsic self‐healing was prepared from a diamine Diels‐Alder (DA) adduct cross‐linker and a commercial epoxy oligomer. The newly synthesized diamine cross‐linker, comprising a DA adduct of furan and maleimide moieties, can cure epoxy monomer/oligomer with thermal reversibility. The reversible transition between cross‐linked state and linear architecture endows the cured epoxy with rapid recyclability and repeated healability. The reversibly cross‐linked epoxy fundamentally behaves as typical thermosets at ambient conditions yet can be fast reprocessed at elevated temperature like thermoplastics. As a potential reversible adhesive, the epoxy polymer with adhesive strength values about 3 MPa showed full recovery after repeated fracture‐thermal healing processes. The methodology explored in this contribution provides new insights in modification of conventional engineering plastics as functional materials. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 2094–2103  相似文献   
4.
Films of amorphous polystyrene (PS) with a weight-average molecular weight (Mw) of 225 × 103 g/mol were bonded in a T-peel test geometry, and the fracture energy (G) of a PS/PS interface was measured at the ambient temperature as a function of the healing time (th) and healing temperature (Th). G was found to develop with (th)1/2 at Th = Tg-bulk − 33 °C (where Tg-bulk is the glass-transition temperature of the bulk sample), and log G was found to develop with 1/Th at Tg-bulk − 43 °C ≤ ThTg-bulk − 23 °C. The smallest measured value of G = 1.4 J/m2 was at least one order of magnitude larger than the work of adhesion required to reversibly separate the PS surfaces. These three observations indicated that the development of G at the PS/PS interface in the temperature range investigated (<Tg-bulk) was controlled by the diffusion of chain segments feasible above the glass-transition temperature of the interfacial layer, in agreement with our previous findings for fracture stress development at several polymer/polymer interfaces well below Tg-bulk. Close values of G = 8–9 J/m2 were measured for the symmetric interfaces of polydisperse PS [Mw = 225 × 103, weight-average molecular weight/number-average molecular weight (Mw/Mn) = 3] and monodisperse PS (Mw = 200 × 103, Mw/Mn = 1.04) after healing at Th = Tg-bulk − 33 °C for 24 h. This implies that the self-bonding of high-molecular-weight PS at such relatively low temperatures is not governed by polydispersity. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 1861–1867, 2004  相似文献   
5.
Summary  Thermopiezoelastic materials have recently attracted considerable attention because of their potential use in intelligent or smart structural systems. The governing equations of a thermopiezoelastic medium are more complex due to the intrinsic coupling effects that take place among mechanical, electrical and thermal fields. In this analysis, we deal with the problem of a crack in a semi-infinite, transversely isotropic, thermopiezoelastic material by means of potential functions and Fourier transforms under steady heat-flux loading conditions. The problem is reduced to a singular integral equation that is solved. The thermal stress intensity factor for a crack situated in a cadmium selenide material is calculated. Received 20 March 2001; accepted for publication 18 October 2001  相似文献   
6.
Fatigue Loading and Life Prediction in Three Fretting Fatigue Fixtures   总被引:1,自引:0,他引:1  
Three fixtures for conducting laboratory fretting fatigue tests are described and their respective testing methods and the results of the analysis are compared. Each of these fixtures has been used to investigate the effects of various parameters of interest in fretting fatigue. These fixtures include a unique apparatus in which all load applied to the specimen is transferred to the fretting pads, an apparatus similar to many found in the literature where partial load transfer occurs across the pads, and a simplified dovetail fixture in which the clamping load, P, and the shear load, Q, are varied in phase. Select test conditions from prior experiments performed on identical material and resulting in similar lives ranging from one to ten million cycles from these fixtures are identified. The various testing conditions were used to compute the unique stress field for each case. The resulting contact stresses were used to calculate crack initiation based criteria, and to calculate stress intensity factors. The three fixtures were shown to be able to accommodate a range of loads, fretting pad contours, and specimen geometries that produced a variety of stress fields. A crack-initiation-based criterion was shown to predict the failure lives of thinner specimens accurately. The stress intensity factor calculations showed the possibility of a crack arresting for a stress field that decays rapidly and the possibility of a local minimum for K as a function of depth. The fixtures are shown to be complementary in generating data for development of robust fretting fatigue models that use these criteria.  相似文献   
7.
We study a one-dimensional model for fracture, identifying fractured areas with intervals on which a stress field exceeds a threshold value. When is a diffusion process, the cumulative numberN(l) of fractured areas whose length is greater thanl obeys a power lawCl p asl0 with probability one. The exponentp and the constantC are determined. The exponentp agrees with the Hausdorff dimension of the end points of fractured areas, i.e., –1(). Even if is self-similar with parameterH>0, i.e.,(cx)– is equivalent toc H {(x)–} for anyc>0, the exponentp does not depend solely onH;p=H, where(0, 1/H) is another parameter characterizing. Non-diffusion processes are given whereN(l) does not follow a power law.  相似文献   
8.
聚丙烯/POE共混组成对材料断裂行为的影响   总被引:1,自引:0,他引:1  
采用基本断裂功(EWF)方法对聚丙烯(PP)/聚烯烃弹性体(POE)共混物的注射双边缺口拉伸试样的断裂行为进行了研究,比较了不同POE含量对共混物各断裂参数的影响.结果表明,PP和用量为5phr POE的共混物都可完全满足EWF方法的要求,共混物的断裂韧性-比基本断裂功we,较PP有显著提高;POE用量为10phr以上的共混物则出现明显的成颈现象而限制了EWF方法的应用;PP和各种POE用量的共混物都得到了其屈服所需要的比基本断裂功we,y和比塑性功β′wp,y.  相似文献   
9.
 Living tissues work with fantastic functions in soft and wet gel-like state. Thus, hydrogels have attracted much attention as excellent soft & wet materials, suitable for making artificial organs for medical treatments.However, conventional hydrogels are mechanically too weak for practical uses. We have created double network (DN) hydrogels with extremely high mechanical strength in order to overcome this problem. DN gels are interpenetrating network (IPN) hydrogels consisting of rigid polyelectrolyte and soft neutral polymer. Their excellent mechanical properties cannot be explained by the standard fracture theories. In this paper, we discuss about the toughening mechanism of DN gels in accordance with their characteristic behavior, such as large hysteresis and necking phenomenon. We also describe the results on tissue engineering application of DN gels.  相似文献   
10.
研究了聚芳醚酮(PEK-C)在200℃下长时间放置过程中拉伸断裂行为的变化.通过应力-应变实验、断面形貌观察及去老化现象的研究证实,200℃下长时间放置后的PEK-C的拉伸断裂行为,发生韧性-脆性转变,发生这一转变的时间约在589小时左右.伴随199℃下的拉伸过程中出现的去老化现象,决定于材料发生剪切屈服形变的能力,与韧性-脆性断裂行为转变有着本质的联系.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号