首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5089篇
  免费   636篇
  国内免费   368篇
化学   2110篇
晶体学   76篇
力学   1286篇
综合类   42篇
数学   737篇
物理学   1842篇
  2024年   6篇
  2023年   54篇
  2022年   140篇
  2021年   152篇
  2020年   219篇
  2019年   173篇
  2018年   150篇
  2017年   173篇
  2016年   233篇
  2015年   176篇
  2014年   208篇
  2013年   590篇
  2012年   203篇
  2011年   236篇
  2010年   187篇
  2009年   253篇
  2008年   264篇
  2007年   290篇
  2006年   242篇
  2005年   217篇
  2004年   225篇
  2003年   200篇
  2002年   173篇
  2001年   164篇
  2000年   155篇
  1999年   149篇
  1998年   130篇
  1997年   105篇
  1996年   104篇
  1995年   102篇
  1994年   64篇
  1993年   49篇
  1992年   42篇
  1991年   46篇
  1990年   40篇
  1989年   29篇
  1988年   35篇
  1987年   14篇
  1986年   18篇
  1985年   15篇
  1984年   19篇
  1983年   10篇
  1982年   18篇
  1981年   3篇
  1980年   5篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
  1971年   5篇
  1957年   5篇
排序方式: 共有6093条查询结果,搜索用时 15 毫秒
1.
High-reflective multilayer laser coatings are widely used in advanced optical systems from high power laser facilities to high precision metrology systems. However, the real interface quality and defects will significantly affect absorption/scattering losses and laser induced damage thresholds of multilayer coatings. With the recent advances in the control of coating design and deposition processes, these coating properties can be significantly improved when properly engineered the interface and defects. This paper reviews the recent progress in the physics of laser damage, optical losses and environmental stability involved in multilayer reflective coatings for high power nanosecond near-infrared lasers. We first provide an overview of the layer growth mechanisms, ways to control the microstructures and reduce layer roughness, as well as the nature of defects which are critical to the optical loss and laser induced damage. Then an overview of interface engineering based on the design of coating structure and the regulation of deposition materials reveals their ability to improve the laser induced damage threshold, reduce the backscattering, and realize the desirable properties of environmental stability and exceptional multifunctionality. Moreover, we describe the recent progress in the laser damage and scattering mechanism of nodule defects and give the approaches to suppress the defect-induced damage and scattering of the multilayer laser coatings. Finally, the present challenges and limitations of high-performance multilayer laser coatings are highlighted, along with the comments on likely trends in future.  相似文献   
2.
3.
Self-assembly is a versatile bottom-up approach for fabricating novel supramolecular materials with well-defined nano- or micro-structures associated with functionalities. The oil-water interface provides an ideal venue for molecular and colloidal self-assembly. This paper gives an overview of various self-assembled materials, including nanoparticles, polymers, proteins, and lipids, at the oil-water interface. Focus has been given to fundamental principles and strategies for engineering the self-assembly process, such as control of pH, ionic strength and use of external fields, to achieve complex soft materials with desired functionalities, such as nanoparticle surfactants, structured liquids, and proteinosomes. It has been shown that self-assembly at the oil-water interface holds great promise for developing well-structured complex materials useful for many research and industrial applications.  相似文献   
4.
A new A, D-seco limonoid, named 12-acetyloxyperforatin (1), along with three known ones, were isolated from the leaves of Harrisonia perforata. Their structures were elucidated on the basis of spectroscopic analysis, including extensive NMR techniques and computational modelling. These compounds showed no inhibitory activity against the 11β-HSD1 enzyme.  相似文献   
5.
In the present work, the use of cylindrical turbulators in a double pipe heat exchanger has been investigated. Cylindrical fin type of turbulators has been placed circumferentially separated by 90° on the outer side of an inner pipe at a regular pitch. Experimental studies were undertaken for different air flow rates in a turbulent regime whose Reynolds number range between 2500 and 10000. Heat transfer characteristics like Nu and friction factor have been experimentally determined. Parametric studies were conducted by changing the pitch and also the orientation of the turbulators. Nu and friction factor were found to increase as the pitch is reduced. A model with alternatively changed orientation outperformed others by exhibiting highest Nu and reduced friction factor.  相似文献   
6.
7.
Sensitivity analysis is a mathematical tool, first developed for optimization methods, which aim is to characterize a system response through the variations of its output parameters following modifications imposed on the input parameters of the system. Such an analysis may quickly become laborious when the thermal model under consideration is complex or the number of input parameters is high. In this paper, we develop a mathematical model to analyse the heat exchanges in four different types of solar air collectors. When building this thermal model we show that for each collector, at quasi-steady state, the energy balance equations of the components of the collector cascade into a single first-order non-linear differential equation that is able to predict the thermal behaviour of the collector. Our heat transfer model clearly demonstrates the existence of an important dimensionless parameter, referred to as the thermal performance factor of the collector, that compares the useful thermal energy which can be extracted from the heater to the overall thermal losses of that collector for a given set of input parameters. A sensitivity analysis of our thermal model has been performed for the most significant input parameters such as the incident solar irradiation, the inlet fluid temperature, the air mass flow rate, the depth of the fluid channel, the number and nature of the transparent covers in order to measure the impact of each of these parameters on our model. An important result which can be drawn from this study is that the heat transfer model developed is robust enough to be used for thermal design studies of most known flat plate solar air heaters, but also of flat plate solar water collectors and linear solar concentrators.  相似文献   
8.
固体间界面的物理模型和界面对声波的反射   总被引:4,自引:0,他引:4  
王耀俊 《物理》2002,31(12):768-772
简要描述了模拟两固体间界面特性的弹簧模型,该模型最早是根据静力学方法提出的,后来用固体间界面薄层的声波反射方法加以改进,从界面弹簧模型可以方便地得到界面外近似边界条件,其中包含界面“弹簧”振子的劲度常数和质量,文章还给出了两相间固体中界面声反射系数的表达式,介绍了测量界面劲度常数的超声反射谱方法。最后讨论了仍关声波与界面相互作用研究领域中最近的一些研究进展。  相似文献   
9.
A simple simulation scheme that simultaneously describes the growth kinetics of SiO2 films at the nanometer scale and the SiOx/Si interface dynamics (its extent, and spatial/temporal evolution) is presented. The simulation successfully applies to experimental data in the region above and below 10 nm, reproduces the Deal and Grove linear-parabolic law and the oxide growth rate enhancement in the very thin film regime (the so-called anomalous region). According to the simulation, the oxidation is governed mainly by two processes: (a) the formation of a transition suboxide layer and (b) its subsequent drift towards the silicon bulk. We found that it is the superposition of these two processes that produces the crossover from the anomalous oxidation region behavior to the linear-parabolic law.  相似文献   
10.
We present a finite element model to investigate the dynamic thermal and mechanical response of ceramic materials to pulsed infrared radiation. The model was applied to the specific problem of determining the influence of the pulse duration on the stress levels reached in human dental enamel irradiated by a CO2 laser at 10.6 μm with pulse durations between 0.1 and 100 μs and sub-ablative fluence. Our results indicate that short pulses with durations much larger than the characteristic acoustic relaxation time of the material can still cause high stress transients at the irradiated site, and indicate that pulse durations of the order of 10 μs may be more adequate both for enamel surface modification and for ablation than pulse durations up to 1 μs. The model presented here can easily be modified to investigate the dynamic response of ceramic materials to mid-infrared radiation and help determine optimal pulse durations for specific procedures.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号