首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   41篇
  免费   2篇
力学   1篇
物理学   42篇
  2020年   2篇
  2019年   1篇
  2017年   1篇
  2016年   1篇
  2015年   1篇
  2014年   1篇
  2013年   1篇
  2012年   2篇
  2011年   3篇
  2009年   3篇
  2008年   4篇
  2007年   5篇
  2006年   2篇
  2005年   5篇
  2004年   3篇
  2003年   2篇
  2002年   3篇
  2001年   1篇
  1999年   1篇
  1991年   1篇
排序方式: 共有43条查询结果,搜索用时 15 毫秒
1.
Wavelength scanned interferometry allows the simultaneous measurement of top surface shape and optical thickness variation of a transparent object consisting of several parallel surfaces. Interference signals from these surfaces can be separated in frequency space, and their phases are detected by discrete Fourier analysis. However, these signal frequencies are shifted from the detection frequency by the refractive index dispersion of the object and a nonlinearity of the wavelength scanning. The Fourier analysis is sensitive to the detuning of the signal frequency and suffers from the multiple-beam interference noise. Conventional error-compensating algorithms cannot be applied to an object consisting of more than three reflecting surfaces. We derive a new 2N-1 sample error-compensating algorithm, which allows the phase detection of any order of harmonic frequency among the interference signals. The new algorithm suppresses the effect of signal frequency detuning as well as the multiple-beam interference noise and can be applied to the measurement of complex objects consisting of more than three reflecting surfaces.  相似文献   
2.
设计了菲索式合成孔径望远镜光学系统,用3个小口径子孔径合成大口径以获得等效大口径的分辨率。首先,兼顾空间频率u-v覆盖和结构简单化,选择子孔径排列方式为Golay-3阵列,填充因子F=0.44。然后,依据光学系统结构特性,将光学系统分成子孔径、光束控制器和光束组合器,分别进行光学设计。无焦式子孔径采用后接双胶合消色差透镜的卡塞格林结构,孔径为300 mm,视场为0.2°,角放大率为10。光束组合器为五片式结构,采用高折射率玻璃和特殊部分色散玻璃,焦距为600 mm,F/#=6,视场为2°。分析总系统点扩散函数和调制传递函数显示:总系统等效口径为子孔径口径的1.89倍,总系统角分辨率为0.24″。  相似文献   
3.
采用LD泵浦的单纵模Nd:YVO4倍频激光器、梯度折射率光纤透镜等器件构成斐索梯度折射率光纤透镜传感实验仪.本文介绍了实验装置和实验原理,并给出了实验结果。  相似文献   
4.
Some aspects concerning the subfringe integration method in interferogram analysis have been investigated and modified. The modified algorithm, introduced in this paper, is capable of reconstructing the phase in the presence of noise or errors in carrier frequency. The subfringe integration method was applied to analyze two computer simulated patterns of equispaced Fizeau fringes using N bucket integration. Also, it is used to analyze the multiple-beam Fizeau fringe. The refractive index profile of polyethylene fiber is obtained by using two methods, subfringe integration method, and Fourier transform method. A comparison between the obtained results using the maintained methods is presented.  相似文献   
5.
In phase-shifting Fizeau interferometers, nonlinear motion of the phase shifter and multiple-beam interference are the most common sources of systematic errors affecting high-precision phase measurement. A new class of algorithms with extended compensating capability for these errors is proposed. Measurement errors for the new algorithms and two groups of conventional algorithms: discrete Fourier algorithms and the Schwider-Larkin-Hibino algorithms are estimated as a function of the number of sampled images when these systematic error sources are equally dominant. It is shown that the conventional phase-measuring algorithms produce significant errors when the reflectivity of the testing surface exceeds ten percent. Also, these algorithms have an optimum number of samples at around seven with which the residual errors become minimum. The new class of algorithms shows a substantial reduction of the residual errors when the number of samples exceeds ten. There is no optimum number of samples for the new algorithms. For fewer than six samples, discrete Fourier algorithms which have no error-compensating capability for the nonlinearity of phase modulation give a minimum error.  相似文献   
6.
A fiber optic ultrasonic sensor based on Fizeau interferometer has been developed and demonstrated. A helium–neon laser light source with wavelength 0.6328 μm is used in our experiment. A special feature is its Fizeau configuration, which enables one to eliminate much undesirable noise by combining both the reference arm and the sensing arm within the same length of fiber. The dynamic response model of photo-elastic effect of ultrasonic wave and optical fiber is established. The fiber optic ultrasonic sensor experimental results are obtained and compared with the convenient PZT transducer.  相似文献   
7.
Using traditional five-interferogram algorithm to unwrap phase for length measurement, the phase steps must be equal to π/2 exactly, but it is almost impossible to achieve in nanometer positioning technique.Aiming to overcome this defect of traditional five-interferogram algorithm, an improved five-interferogram algorithm is presented.This improved algorithm not only keeps the high accuracy of traditional five-interferogram algorithm, but also does not need absolute equal step to unwrap phase.Instead, this algorithm only needs measuring phase-shifting.With the numerical simulation, the improved five-interferogram algorithm shows high accuracy, high reliability, and feasibility in practice.It is very valuable for accurate length measurement with Fizeau interferometer and Fabry-Perot interferometer.  相似文献   
8.
适合于内窥成像的共路型光学相干层析成像系统   总被引:3,自引:1,他引:3  
提出了一种采用光纤型迈克耳孙干涉仪进行光程补偿的菲佐型光学相干层析成像(OCT)系统.该系统的传感探头为共路干涉结构,以解决现有内窥光学相干层析成像系统中存在的探头运动导致图像失真、以及更换使用不同探头时需进行色散和偏振态调节等问题.光程补偿和振动干扰实验结果表明,光程补偿方法正确可行,系统对环境干扰不敏感.利用研制的系统对反射镜和近红外卡进行了成像实验,验证了系统的有效性.提出的方法非常适合于内窥成像,并给出了把系统扩展为内窥光学相干层析成像系统的具体实现过程.  相似文献   
9.
In this work, we present a simple photonic instrument that has the ability of measuring positions, distances and vibrations with very high resolution by means of two Fizeau interferometers (FI), both using the same optical fiber end as a probe tip itself. On the one hand we have a time domain FI powered with a 1310 nm laser and monitored by an InGaAs detector providing displacement information with resolution around a tenth of nm but regardless of the absolute position of object and of the displacement sense. On the other, a spectral domain FI version based on a super luminescent source (SLED) centred at 800 nm with bandwidth of nearly 40 nm is analysed in real time by means of a digital spectrometer. Each spectrum is acquired in a very small time interval and provides information of both length of the cavity as well as its correct sense of evolution. Resolution of this system is lower than its complementary temporal case, but distance and sense measurements are absolute and can be determined successfully by adequate processing of spectral signal.Both interferometers are optically coupled to a single fiber optic probe and are wavelength modulated.Therefore, combination of both sensors results in a new one which allows the correct knowledge of an object or surfaces under test, i.e. a high resolution of displacement data plus its absolute position and true sense of movement.  相似文献   
10.
Hippolyte Fizeaus research program on ether drag consisted of a sequence of optical experiments and theoretical considerations aimed at clarifying the interaction between the ether and moving matter to reveal the motion of the Earth through the ether. In addition to Fizeaus published papers, my reconstruction of his research program is based on his unpublished drafts, sketches, and experimental data.These reveal an increasingly complex interplay between his experimental setups,unexpected results, and theoretical convictions. I argue that publishing is an integral part of experimental research rather than a secondary activity undertaken after the true laboratory research has been completed. Accordingly, Fizeaus research program can best be understood as a long quest for a publishable experiment. I show that to Fizeau, to be publishable meant achieving an expected positive experimental result.This publication strategy deeply influenced the design of his experiments as well as what he and his audience regarded as successful experimental research.Jan Frercks received his Ph.D. degree in the history of physics at the Carl von Ossietzky University of Oldenburg, Germany, in 2001. He currently is a postdoctoral researcher in the Institute for History of Medicine, Science, and Technology at the Friedrich Schiller University of Jena, Germany.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号