首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   1篇
物理学   8篇
  2016年   1篇
  2015年   1篇
  2011年   2篇
  2009年   1篇
  2008年   2篇
  2007年   1篇
排序方式: 共有8条查询结果,搜索用时 18 毫秒
1
1.
《Current Applied Physics》2015,15(11):1296-1302
One-dimensional ZnO materials have been promising for field-emission (FE) application, but how to facially control the alignment of ZnO emitters is still a great challenge especially for patterned display application. Here, we report the fabrication of novel ZnO nanowire (NW) line and bundle arrays for patterned field-electron emitters. The effects of PS template size and heating time on the resulted ZnO nanoarrays were systematically studied. The deformation degree of PS templates was controlled and hence utilized to adjust the alignment of electrochemically deposited ZnO arrays. It was found that the length of NW lines and the density of NW bundles can effectively tuned by the PS template heating time. The optimal FE performance with turn-on electric field as low as of 4.4 V μm−1 and the field-enhancement factor as high as of 1450 were achieved through decreasing the screening effect among the patterned field-electron emitters.  相似文献   
2.
GaN thin films grown by MOCVD on (0 0 0 1) Al2O3 substrates at different growth pressures were characterized by field-emission scanning electron microscopy, atomic force microscopy, micro-Raman, and photoluminescence at room temperature. It was found that there is an optimum pressure of 76 Torr at which the structural and optical properties of the GaN samples are superior. On the other hand samples grown at higher pressure exhibited hexagonal surface pits and surface spirals. The results showed that the growth pressure strongly influences the morphology, and significantly affects the structural and optical properties of the GaN epilayers.  相似文献   
3.
Aligned tin dioxide (SnO2) nanotubes have been synthesized by high-frequency inductive heating. Nanotubes with high yield were grown on silicon substrates in less than 5 min, using SnO2 and graphite as the source powder. Scanning electron microscopy and transmission electron microscopy showed nanotube with diameters from 50 to 100 nm and lengths up to tens of mircrometers. The SnO2 nanotubes synthesized under the optimum condition have better field-emission characteristics. The turn-on field needed to produce a current density of 10 μA/cm2 is found to be 1.64 V/μm. The samples show good field-emission properties with a fairly stable emission current. This type of SnO2 nanotubes can be applied as field emitters in displays as well as vacuum electric devices.  相似文献   
4.
Co-doped ZnO films were fabricated using electrodeposition method on the ITO substrates. The structure of the Co-doped ZnO films was analyzed by X-ray diffraction and scanning electron microscope. The field-emission characteristics of the prepared Co-doped ZnO films were examined using diode structure in a vacuum chamber. The examined results indicate that the Co-doping cause the turn-on field increasing by increasing the concentration of the Co-dopant, probably due to the band gap changing, which could attributed to the sp-d exchange interactions between the band electrons and the localized d electrons of the Co2+ ions substituting Zn ions in the films.  相似文献   
5.
Atom probe tomography (APT) combines the highest spatial resolution with chemical data at atomic scale for the analysis of materials. For geological specimens, the process of field evaporation and molecular ion formation and interpretation is not yet entirely understood. The objective of this study is to determine the best conditions for the preparation and analysis by APT of carbonate minerals, of great importance in the interpretation of geological processes, focusing on the bulk chemical composition. Results show that the complexity of the mass spectrum is different for calcite and dolomite and relates to dissimilarities in crystalochemical parameters. In addition, APT bulk chemistry of calcite closely matches the expected stoichiometry but fails to provide accurate atomic percentages for elements in dolomite under the experimental conditions evaluated in this work. For both calcite and dolomite, APT underestimates the amount of oxygen based on their chemical formula, whereas it is able to detect small percentages of elemental substitutions in crystal lattices. Overall, our results demonstrate that APT of carbonate minerals is possible, but further optimization of the experimental parameters are required to improve the use of atom probe tomography for the correct interpretation of mineral geochemistry.  相似文献   
6.
一种紧凑型高功率脉冲调制器   总被引:2,自引:1,他引:1       下载免费PDF全文
 研制了一种基于水介质单同轴脉冲形成线型的高功率脉冲调制器,该调制器由初级储能电容器、脉冲变压器、水介质同轴脉冲形成线、氢气主开关和场发射真空二极管等组成。用Pspice电路软件对脉冲形成线的充电电压和二极管电压、电流进行了模拟,并用有限元软件分析了脉冲形成线的电场分布。当初级储能电容器组充电电压为35 kV, 氢气主开关导通电压高达520 kV时,在调制器场发射二极管输出电压约230 kV, 束流30 kA,脉宽约60 ns的高电压脉冲。此外,对主开关充不同类型的气体进行了实验研究,结果表明:氢气主开关的脉冲调制器能够在二极管上获得前沿更陡的高电压脉冲,并能有效地改善二极管电子束的性能。理论分析与实验结果基本一致。此种类型的调制器具有运行稳定、体积小、结构紧凑的特点。  相似文献   
7.
A simple and self-catalytic method has been developed for synthesizing finely patterned ZnO nanorods on ITO-glass substrates under a low temperature of 500 °C. The patterned ZnO nanorod arrays, a unit area is of 400 × 100 μm2, are synthesized via vapor phase transport method. The surface morphology and composition of the as-synthesized ZnO nanorods are characterized by means of scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX). The mechanism of formation of ZnO nanorods is also discussed. The measurement of field emission (FE) reveals that the as-synthesized ZnO nanorods arrays have a turn-on field of 3.3 V/μm at the current density of 0.1 μA/cm2 and a low threshold field of 6.2 V/μm at the current density of 1 mA/cm2. So this approach must have a potential application of fabricating micropatterned oxide thin films used in FE-based flat panel displays.  相似文献   
8.
Field-emission displays (FEDs) have been studied intensively in recent years as a candidate for flat-display panels in the future. In a FED, electrons emit from field emitters. Some electrons may impinge on the insulator surface between cathode and gate electrodes and cause charging of that surface because the yield of secondary electron emission is usually not equal to one. The charging of the insulator walls between cathode and gate electrodes is one of the important factors influencing the performance of a FED. In this paper, a simulation program is used to calculate this charge deposition, electric field distribution and electron trajectories. From the change of the electric field upon charge deposition in the triode region, it is shown that the insulator surface is negatively charged at a low gate voltage, e.g. 20 V. However, positive charge is deposited when the gate voltage is high, e.g. 100 V. The simulations also show that the emission current will increase even further after coating the dielectric with a thin film of a material with a high-secondary emission coefficient such as MgO. If a cone-shaped dielectric aperture is used in a triode, the emission current will decrease after charge deposition. However, the focus performance of the electron beam is improving in this case.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号