首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   82篇
  免费   4篇
化学   71篇
力学   1篇
物理学   14篇
  2024年   1篇
  2023年   9篇
  2022年   3篇
  2021年   6篇
  2020年   3篇
  2019年   1篇
  2017年   4篇
  2016年   5篇
  2015年   1篇
  2013年   1篇
  2012年   17篇
  2011年   1篇
  2010年   1篇
  2009年   8篇
  2008年   5篇
  2007年   2篇
  2006年   3篇
  2005年   2篇
  2004年   3篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
  1998年   1篇
  1997年   3篇
  1996年   1篇
  1987年   1篇
  1970年   1篇
排序方式: 共有86条查询结果,搜索用时 78 毫秒
1.
《Electroanalysis》2006,18(23):2361-2368
The oxidation of benzophenone‐4 (2‐hydroxy‐4‐methoxybenzophenone‐5‐sulfonic acid) at glassy carbon electrode gives rise to stable redox active electropolymerized film during repetitive potential cycling between 0 to 1.3 V (Ag/AgCl). Cyclic voltammogram of poly(benzophenone‐4) film shows a redox couple with well‐defined peaks. The redox response of the modified electrode was found to be depending on the pH of the contacting solution. The peak potentials were shifted to a less positive region with increasing pH and the dependence of the peak potential was found to be 51 mV/pH. The electrocatalytic behavior of poly(benzophenone‐4) film modified electrode towards oxidation of dopamine, ascorbic acid and reduction of nitrite was investigated. The oxidation of dopamine and ascorbic acid occurred at less positive potential on poly(benzophenone‐4) film compared to bare glassy carbon electrode. For dopamine, the overpotential was reduced about 180 mV. Feasibility of utilizing poly(benzophenone‐4) film coated electrode in analytical estimation of dopamine, ascorbic acid and nitrite was also demonstrated.  相似文献   
2.
Franco Cataldo 《Tetrahedron》2004,60(19):4265-4274
The products of the electric arc between graphite electrodes have been investigated by high performance liquid chromatography-diode-array detector (HPLC-DAD) analysis in various media: distilled water, liquid nitrogen, methanol, ethanol, n-hexane and benzene. In distilled water, hydrogen capped polyynes H-(CC)n-H were the unique products demonstrating that carbon is supplied by the graphite electrodes while hydrogen is supplied by the solvent plasmalysis (in this case water plasmalysis). Arcing graphite electrodes in liquid nitrogen produces cyanopolyynes: NC-(CC)n-CN demonstrating that in this case the end groups of the polyyne chains are supplied by molecular nitrogen plasmalysis caused by the electric arc. Graphite arcing in methanol and ethanol produces very clean solutions (by-products negligible or absent) of hydrogen-capped polyynes with C8H2 as the main product accounting for more than 70 mol percent of the total polyyne concentration. By replacing graphite electrodes with titanium electrodes in methanol or in ethanol, polyynes are not formed at all; only trace amounts of polycyclic aromatic hydrocarbons (PAHs) were detected. When arcing with graphite electrodes is conducted in n-hexane or in benzene, polyyne formation is accompanied by a significant production of PAH, especially in benzene. These results have been rationalized in terms of carbonization or coking tendency of a given solvent. The effect of using titanium electrodes in place of graphite electrodes has been investigated also in n-hexane and in benzene as well as the effects of very high electric current intensity employed to ignite and sustain the submerged electric arc.  相似文献   
3.
Improved preparative electrochromatography column design   总被引:2,自引:0,他引:2  
Improved chromatography column fittings were developed for the efficient and reliable application of an electric field to a preparative chromatography column (a process termed electrochromatography). The improved fittings contained electrodes in close proximity to the column packing media and allowed uniform electric fields to be applied. Membranes in the fittings prevented mixing of the electrode and the column eluent buffers. The membranes prevented gases and electrolytic products generated in the electrode chamber from entering the column eluent buffer. An electrode buffer solution was pumped through the electrode chamber to a large external container. The circulation of buffer through the electrode chamber removed the gases and electrolytic products and ensured a uniform electric field by helping to maintain a constant buffer composition. The membranes prevented macromolecules being separated on the column from coming in contact with the electrodes.  相似文献   
4.
Electroanalytical sensors, suitable for the analysis and monitoring of electroactive analytes present in gaseous phase or low-conductive liquid media, and based on electrodes in close contact with perfluorinated ion-exchange polymers are reviewed. The basic operative mechanism of these sensors, in which ion-exchange polymers act as solid polymer electrolytes (SPE's), is thoroughly discussed, while stressing the fundamental reasons why their behavior differs from that of conventional membrane electrodes. The procedures for preparing composite working electrodes by coating one side of ion-exchange membranes with stable porous films of conductive materials are described, along with the most common strategies followed to assemble this type of sensors. Useful examples of measurements in electrolyte-free media of inorganic and organic electroactive species of interest mainly for environmental analysis are given. Future prospects for the development of these sensors are also discussed.  相似文献   
5.
In the perspective of in-field stripping analysis of heavy metals, the use and disposal of toxic mercury solutions (necessary to plate a mercury film on a carbon electrode surface) presents a problem. The aim of this work was the development of mercury coated screen-printed electrodes previously prepared in the lab and ready to use in-field. Thus some commercially available polymers like Nafion®, Eastman Kodak AQ29®, and Methocel® were investigated as mercury entrapping systems for electrochemical stripping analysis of heavy metals. Screen-printed disposable cells with a silver pseudo-reference electrode, a graphite counter electrode, and a graphite working electrode were used. To modify the sensor, the polymer solution was cast onto the carbon working electrode surface. Detection limits of 0.8 and 1 μg/L were obtained for lead and cadmium respectively. Since Methocel® based electrodes showed the best performance, they were used for the analysis of real samples. The results were compared with those obtained using a classical thin mercury film electrode and ICP spectroscopy.

All the experiments reported here were performed in un-deareated solutions as required for in-field analysis.  相似文献   
6.
The review provides articles discussing big challenges behind successful design of impedimetric biosensors and the way such challenges were/could be addressed for highly sensitive affinity detection of proteins. In particular, the effect of gold etching by chloride ions or by CN? ions (released from the redox probe [Fe(CN)6]3-/4-), the effect of ionic strength of the assay buffer; the effect of initial interfacial properties (capacitance) and the effect of the high analyte:bioreceptor ratio on electrochemical impedance spectroscopy–based biosensing are discussed. The review provides also short discussion related to other factors, which can significantly affect operational performance of electrochemical impedance spectroscopy–based biosensing including novel conductive interfaces, small bioreceptors, strategies for improved selectivity (nonbiofouling interfaces) and sensitivity (use of nanoparticles).  相似文献   
7.
The abuse of antibiotics will cause an increase of drug-resistant strains and environmental pollution,which in turn will affect human health.Therefore,it is important to develop effective detection techniques to determine the level of antibiotics contamination in various fields.Compared with traditional detection methods,electrochemical sensors have received extensive attention due to their advantages such as high sensitivity,low detection limit,and good selectivity.In this mini review,we summarized the latest developments and new trends in electrochemical sensors for antibiotics.Here,modification methods and materials of electrode are discussed.We also pay more attention to the practical applications of antibiotics electrochemical sensors in different fields.In addition,the existing problems and the future challenges ahead have been proposed.We hope that this review can provide new ideas for the development of electrochemical sensors for antibiotics in the future.  相似文献   
8.
本文提出了一种新的离子选择性电极分析方法,即等电位差-标准加入法。本方法已用于氟的测定。进行了理论数据验证及误差分析,标准溶液的回收率为96.6%-104.3%。本方法的影响因素少、准确度好、操作及计算简便。  相似文献   
9.
基于介电电泳的微流控细胞分离芯片的研究进展   总被引:2,自引:0,他引:2  
细胞分离技术是细胞分选和细胞种群纯化的重要手段,在生物、医学、农业、环境等许多领域都有重要的应用,是当前生化分析领域的国际研究热点。本文介绍了基于介电电泳的微流控细胞分离芯片的研究现状,阐述了介电电泳的工作原理,并依据细胞尺寸、电极形状、外加信号方式等影响细胞介电电泳的关键因素对不同类型的微流控细胞分离芯片进行了详细介绍,并对该技术的未来发展趋势做了展望。  相似文献   
10.
《Electroanalysis》2017,29(6):1635-1642
Our studies are focused on the development of novel potentiometric sensors for the quantification of the neurotransmitter serotonin. Therefore, ion‐selective electrodes based on plasticized PVC membranes are applied. The electroactive part of the membrane consists of an ion pair complex formed between the protonated analyte and a carborane anion [Co(1,2‐C2B9H11)2]. The analytical performance of the electrode was studied regarding sensitivity, concentration range, limit of detection and potential stability. The ion‐selective electrodes were optimized with respect to the material of the transducing element, as well as the membrane thickness and its composition. Stable, all solid state ISEs could be developed, using the non‐polar plasticizer NPOE and a graphite rod with high surface area as transducing element. We thus achieved a near Nernstian response over three decades of concentration (2.25⋅10‐5‐1.00⋅10‐2 M) and a limit of detection in the μ‐molar range for the optimized electrodes. The electrodes could successfully be miniaturized using carbon based screen printed electrodes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号