首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   49篇
  免费   7篇
化学   30篇
力学   1篇
综合类   1篇
物理学   24篇
  2023年   2篇
  2022年   2篇
  2021年   2篇
  2020年   7篇
  2019年   1篇
  2018年   5篇
  2017年   2篇
  2016年   2篇
  2015年   1篇
  2014年   1篇
  2012年   2篇
  2011年   2篇
  2010年   2篇
  2009年   4篇
  2008年   1篇
  2007年   2篇
  2006年   7篇
  2005年   3篇
  2004年   3篇
  2002年   1篇
  2001年   1篇
  1998年   1篇
  1992年   1篇
  1984年   1篇
排序方式: 共有56条查询结果,搜索用时 281 毫秒
1.
光纤抗干扰技术在计算机中的应用   总被引:1,自引:0,他引:1  
介绍了用光纤传输计算机信号的必要性和优越性 ,以及具体的实施办法和出现问题、难点的解决方法。  相似文献   
2.
For certain applications of galvanized steel protected with conversion coatings it is important that the surface is electrically conductive. This is especially important with mating surfaces for electromagnetic compatibility. This paper addresses electrical conductivity of chromate conversion coatings. A cross-matrix study using different zinc plating techniques by different labs showed that the main deciding factor is the type of zinc-plating bath used rather than the subsequent chromating process. Thus, chromated zinc plate electrodeposited from cyanide baths is non-conductive while that from alkaline (non-cyanide) and acid baths is conductive, even though the plate from all the bath types is conductive before conversion coating. The results correlate well with the microscopic structure of the surfaces as observed with scanning electron microscopy (SEM) and could be further corroborated and rationalized using EDX and Auger spectroscopies.  相似文献   
3.
4.
Carbon nanomaterials such as carbon nanotubes (CNTs), graphene and their hybrid have been studied extensively. Despite having excellent properties of CNTs and graphene have not yet been fully realized in the polymer composites. During fabrication agglomeration of CNTs and restacking of graphene is a serious concern that results in the degradation of properties of nanomaterials into the final composites. To improve the dispersion of CNTs and restacking graphene, in the present research work, we focused on the hybridization of graphene oxide and CNTs. Multiwalled carbon nanotubes (MWCNTs), functionalized carbon nanotubes (FCNTs), and graphene oxide-carbon nanotubes (GCNTs) reinforced acrylonitrile butadiene styrene (ABS) composites were prepared separately by vacuum filtration followed by hot compression molding. Further, dynamic mechanical analysis (DMA), and electromagnetic interference (EMI) shielding properties of ABS composites reinforced carbon nanofillers were investigated. The dynamic mechanical properties of polymers strongly depend on the adhesion of fillers and polymer, entanglement density of polymer chains in the presence of carbon fillers. The dynamic mechanical characteristics such as storage, loss modulus, and damping factor of prepared composites were significantly affected by the incorporation of MWCNTs, FCNTs, and GCNTs. Maximum EMI shielding effectiveness of −49.6 dB was achieved for GCNT-ABS composites which were highest compared to MWCNTs-ABS composites (−38.6 dB) and FCNTs-ABS composites (−36.7 dB) in the Ku band (12.4–18 GHz). These results depict the great potential of GCNTs-ABS composites to be used in various applications of efficient heat dissipative EMI shielding materials for electronic devices.  相似文献   
5.
This study investigates the low-frequency noise induced by electromagnetic radiation interference (EMI) in a nanometer multi-quantum well InGaN LED (NMQLED). Theoretical models of the noise spectra and the EMI are constructed. In general, a good agreement is identified between the experimental and theoretical results. Both sets of results reveal that the magnitude of the EMI-induced noise is related to the pulse height, the output load, the parasitic capacitance, the interference frequency and the interference amplitude. It is shown that the harmonic noise increases with an increasing interference amplitude and frequency. The techniques presented in this study provide a systematic approach for obtaining the interference noise and signal-to-noise ratio (SNR) in LEDs and similar wavelength-based semiconductor devices.  相似文献   
6.
Through the chemical coating of polypyrrole (PPy) doped with naphthalene sulfonic acid (NSA) on electrically insulating poly (ethylene terephthalate) (PET) woven fabric, PPy–NSA/PET complexes were synthesized. By using the electrochemical coating of PPy doped anthraquinone-2-sulfonic acid (AQSA) on PPy–NSA/PET complexes, PPy–AQSA/PPy–NSA/PET complexes were synthesized. The silver (Ag) was thermally vacuum evaporated on the surface of PPy–AQSA/PPy–NSA/PET complexes (Ag|PPy–AQSA/PPy–NSA/PET). Electromagnetic interference (EMI) shielding efficiency (SE) and dc conductivity (σdc) of fabric complexes were measured for EMI shielding characteristics and theoretical simulation. The measurement of EMI SE in the frequency range from 50 MHz to 1.5 GHz was performed by using ASTM D4935-99 method. The EMI shielding characteristics such as transmittance, reflectance and absorbance were obtained from the S (scattering)-parameter analysis. We control the contribution of the absorbance or the reflectance to total EMI SE through the coating of conductive PPy and the evaporation Ag.  相似文献   
7.
Composite microcapsules of poly(vinyl alcohol)/poly(acrylic acid)/multi-walled carbon nanotubes were prepared and the electromagnetic interference shielding behavior was evaluated for the composite microcapsules. The dispersion and adhesion of multi-walled carbon nanotubes in microcapsules were improved by the surface modification through direct oxyfluorination which introduced polar groups on the multi-walled carbon nanotubes. The composite microcapsules containing the oxyfluorinated multi-walled carbon nanotubes showed significant increases in permittivity, permeability, and electromagnetic interference shielding efficiency. The electromagnetic interference shielding efficiency of composite microcapsule increased up to 51 dB mainly base on the absorption mechanism.  相似文献   
8.
《先进技术聚合物》2018,29(1):95-110
Arresting of conducting carbon black into polymeric matrix to develop flexible and light weight composite has been a widely practiced platform. Extensive development of telecommunication creates a major vexations regarding radiation pollution. Thereafter, we have been motivated to develop low‐cost, flexible composites of specialty carbon black VXC (Vulcan XC 72)–filled ethylene methyl acrylate (EMA) by mechanical mixing technique. Developed composite has significant conductivity (6.67 × 10−4 S cm−1) with promising mechanical and thermal properties. Dispersion of high‐structured carbon blacks in EMA was investigated by small angle X‐ray scattering to reflect the dependency of conducting mesh formation on dispersion. Interconnected filler network development has been visualized by field emission scanning electron microscope and high‐resolution transmission electron microscope. Electromagnetic interference shielding value in the X band has calculated to be 30.8 dB. Such features can make this EVXC (EMA‐Vulcan XC 72) composite a useful alternate for flexible electromagnetic interference shielding material.  相似文献   
9.
《印度化学会志》2023,100(4):100962
In the proposed work, an investigation of shielding effectiveness (SE) for varying compositions of Graphene, Multiwall carbon nanotubes (MWCNT), and Iron nanoparticles coated on Graphite (Fe@Graphite) was conducted in X-band (8.2 GHz–12.4 GHz). All these are mixed in an LDPE matrix. The nanomaterial was subjected to chemical characterization, i.e., Scanning electron microscopy (SEM), X-ray diffraction (XRD), and vibrating sample magnetometry (VSM). The shielding observed is dominantly due to absorption. The lattice structure which facilitates the shielding due to absorption was the hexagonal graphite structure on whose surface iron nanoparticles were embedded and used as the magnetic filler. At the same time, Graphene and MWCNT act as electrically conducting fillers. The Total shielding effectiveness(SET) was maximum for LDPE, MWCNT, Graphene, and Fe@Graphite, in the ratio of 50: 5: 25: 20 by weight %, and is 49 dB at 9.65 GHz for a sample thickness of 3 mm.  相似文献   
10.
Graphene decorated with graphene quantum dots (G-D-GQDs) have been successfully synthesized using solvothermal cutting of graphene oxide. The incorporation of G-D-GQDs in polyvinyledene fluoride (PVDF) matrix shows the total EMI shielding effectiveness (SET) of 31 dB at 8 GHz. The main mechanism of high EMI shielding effectiveness is reflection and absorption of EM radiation. The high absorption of EM radiation is due to tunneling of electrons from GQDs. Further, decoration of G-D-GQDs with conducting Ag nanoparticles (G-D-GQDsAg) enhances the SET value to 43 dB at 8 GHz of PVDF/G-D-GQDsAg nanocomposite, due to increase in electrical conductivity of PVDF/G-D-GQDsAg nanocomposite and enhanced dispersion of G-D-GQDsAg in PVDF matrix. The incorporation of G-D-GQDs and G-D-GQDsAg in PVDF matrix also increases the thermal stability and crystallinity of PVDF. The increase in thermal stability and crystallinity are more for PVDF/G-D-GQDsAg nanocomposite as compare to PVDF/G-D-GQDs nanocomposite, due to better dispersion of G-D-GQDsAg in PVDF matrix. Thus, PVDF/G-D-GQDsAg nanocomposite having high SET value can shield 99.9% of electromagnetic radiation in X-band range, which make it suitable for EMI shielding application for consumer electronic equipment’s.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号