首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   30篇
  免费   2篇
  国内免费   1篇
化学   26篇
综合类   2篇
物理学   5篇
  2022年   1篇
  2021年   13篇
  2020年   3篇
  2019年   1篇
  2018年   1篇
  2017年   1篇
  2015年   1篇
  2014年   1篇
  2012年   1篇
  2011年   2篇
  2010年   2篇
  2009年   3篇
  2006年   1篇
  2005年   1篇
  2003年   1篇
排序方式: 共有33条查询结果,搜索用时 437 毫秒
1.
Insulin-like growth factor-2 binding proteins (IGF2BPs) are oncogenic RNA-binding proteins, highly up-regulated in HCC, and were recently validated as direct targets of the tumour suppressor miR-1275. It is worth noting that around 47% of FDA approved anticancer drugs are derived from plants. Modulation by miRNAs and their cellular signalling cascades could constitute new pathways by which these phytochemicals exert their effects. This study aimed to investigate the potential use of Tamarix articulata, quercetin and epigallocatechin gallate (EGCG) in HCC and how these phytochemicals could epigenetically modulate the IGF axis using their impact on miR-1275. T. articulata ethyl acetate fraction significantly reduced the viability of Huh-7 cells compared to control cells. Treatment with T. articulata ethyl acetate fraction, quercetin and EGCG significantly enhanced miR-1275, while suppressed IGF2BP1 and IGF2BP3 mRNA expression levels. In summary, T. articulata, quercetin and EGCG have important implications for HCC molecular-targeted therapy through destabilizing the interplay between miR-1275 and the IGF axis.  相似文献   
2.
(–)-Epigallocatechin-3-O-gallate (EGCG), the most abundant component of catechins in tea (Camellia sinensis (L.) O. Kuntze), plays a role against viruses through inhibiting virus invasiveness, restraining gene expression and replication. In this paper, the antiviral effects of EGCG on various viruses, including DNA virus, RNA virus, coronavirus, enterovirus and arbovirus, were reviewed. Meanwhile, the antiviral effects of the EGCG epi-isomer counterpart (+)-gallocatechin-3-O-gallate (GCG) were also discussed.  相似文献   
3.
Data obtained from several intensive care units around the world have provided substantial evidence of the strong association between impairment of the renal function and in-hospital deaths of critically ill COVID-19 patients, especially those with comorbidities and requiring renal replacement therapy (RRT). Acute kidney injury (AKI) is a common renal disorder of various etiologies characterized by a sudden and sustained decrease of renal function. Studies have shown that 5–46% of COVID-19 patients develop AKI during hospital stay, and the mortality of those patients may reach up to 100% depending on various factors, such as organ failures and RRT requirement. Catechins are natural products that have multiple pharmacological activities, including anti-coronavirus and reno-protective activities against kidney injury induced by nephrotoxic agents, obstructive nephropathies and AKI accompanying metabolic and cardiovascular disorders. Therefore, in this review, we discuss the anti-SARS-CoV-2 and reno-protective effects of catechins from a mechanistic perspective. We believe that catechins may serve as promising therapeutics in COVID-19-associated AKI due to their well-recognized anti-SARS-CoV-2, and antioxidant and anti-inflammatory properties that mediate their reno-protective activities.  相似文献   
4.
以胶原纤维(CF)接枝表棓儿茶素棓酸脂(EGCG)为载体,制备了新型非均相钯(Pd)纳米催化剂(CF-EGCG-Pd).EGCG作为"桥分子"不仅对Pd纳米颗粒具有锚定作用,而且能控制Pd纳米颗粒的大小及分布.通过SEM、TEM、XRD、XPS对该催化剂的形貌和物理特性能进行了表征,发现该催化剂具有规整的纤维结构,在胶原纤维的外表面形成了高分散的平均粒径在3.8 nm的Pd纳米颗粒.将该催化剂用于硝基苯液相催化加氢反应,结果表明在308 K和1.0 MPa氢压下,硝基苯转化速率(TOF)达到34.13 mol·mol-1·min-1,苯胺选择性为100%,催化剂重复使用3次其催化活性基本不变.  相似文献   
5.
Epigallocatechin-3-O-gallate (EGCG) is one of the major bioactive compounds known to be present in green tea. We previously reported that EGCG shows selective toxicity through activation of the protein kinase B (Akt)/cyclic guanosine monophosphate (cGMP)/acid sphingomyelinase (ASM) axis via targeting its receptor 67-kDa laminin receptor (67LR), which is overexpressed in cancer. However, little is known about upstream mechanisms of EGCG-elicited ASM activation. In this study we show that the proto-oncogene tyrosine-protein kinase Src, also known as c-src, plays a crucial role in the anticancer effect of EGCG. We showed that EGCG elicits phosphorylation of Src at Tyr 416, a crucial phosphorylation site for its activity, and that the pharmacological inhibition of Src impedes the upstream events in EGCG-induced cell death signaling including upregulation of Akt activity, increase in cGMP levels, and activation of ASM. Moreover, focal adhesion kinase (FAK), which is involved in the phosphorylation of Src, is colocalized with 67LR. EGCG treatment enhanced interaction of FAK and 67LR. Consistent with these findings, pharmacological inhibition of FAK significantly neutralized EGCG-induced upregulation of Akt activity and activation of ASM. Taken together, FAK/Src play crucial roles in the upstream signaling of EGCG.  相似文献   
6.
Molecularly imprinted polymer (MIP) for solid extraction and preconcentration of catechins have been successfully prepared by a thermal polymerization method using quercetin as template, 4-vinylpyridine as functional monomer and ethylene glycol dimethacrylate as crosslinker. A solution mixture of acetone and acetonitrile was used as porogen. Systematic investigations of the influence of monomer, cross-linker, porogen, as well as polymerization conditions on the properties of the MIPs were carried out. The quercetin MIPs were evaluated according to their selective recognition properties for quercetin, structurally related compounds (catechin, epigallocatechin gallate and epicatechin) and a unrelated compound of similar molecular size (α-tocopherol). Good binding was observed for quercetin, catechin and epigallocatechin gallate with an optimized MIP in a solid phase extraction system. Adsorption and kinetic characteristics were evaluated for catechins which indicated that the synthesized polymer had high adsorption capacity and contained homogeneous binding sites. Chemical and morphological characterization of the MIP was investigated by FTIR, SEM and BET, which confirmed a high degree of polymerization. Finally, the MIP was successfully applied to the clean-up and preconcentration of catechins from several natural samples.  相似文献   
7.
Vitamins and bioactives, which are constituents of the food chain, modulate T lymphocyte proliferation and differentiation, antibody production, and prevent inflammation and autoimmunity. We investigated the effects of vitamins (vitamin A (VA), D (VD), E (VE)) and bioactives (i.e., resveratrol (Res), epigallocatechin-3-gallate (EGCG)) on the adaptive immune response, as well as their synergistic or antagonistic interactions. Freshly isolated T lymphocytes from healthy individuals were activated with anti-CD3/CD28 antibodies for 4–5 days in the presence of bioactives and were analyzed by cytofluorometry. Interleukins, cytokines, and chemokines were measured by multiple ELISA. Gene expression was measured by quantitative RT-PCR. Res and EGCG increased CD4 surface intensity. EGCG led to an increased proportion of CD8+ lymphocytes. Anti-CD3/CD28 activation induced exuberant secretion of interleukins and cytokines by T lymphocyte subsets. VD strongly enhanced Th2 cytokines (e.g., IL-5, IL-13), whereas Res and EGCG favored secretion of Th1 cytokines (e.g., IL-2, INF-γ). Res and VD mutually influenced cytokine production, but VD dominated the cytokine secretion pattern. The substances changed gene expression of interleukins and cytokines in a similar way as they did secretion. Collectively, VD strongly modulated cytokine and interleukin production and favored Th2 functions. Resveratrol and EGCG promoted the Th1 response. VA and VE had only a marginal effect, but they altered both Th1 and Th2 response. In vivo, bioactives might therefore interact with vitamins and support the outcome and extent of the adaptive immune response.  相似文献   
8.
Green tea: Health benefits as cancer preventive for humans   总被引:8,自引:0,他引:8  
Green tea is an acknowledged cancer preventive in Japan. The aim of this review article is to develop the concept of cancer prevention with green tea beverage for humans, which has largely been our exclusive research territory. This paper briefly reviews several topics, beginning with the introduction of our initial work on penta-O-galloyl-beta-D-glucose and (-)-epigallocatechin gallate (EGCG), the main constituent of green tea extract. The mechanisms of EGCG action, particularly the reduction of TNF-alpha are discussed, and we show how use of 3H-EGCG revealed a wide range of target organs for cancer prevention. The results of an epidemiological study in Saitama Prefecture allowed us to determine the cancer preventive amount of green tea-10 Japanese-size cups per day, about 2.5 g green tea extract-which made it possible for us to introduce the two-stage strategy of cancer prevention with green tea. The first stage is the delay of cancer onset for the general population. The second stage is the prevention of recurrence of cancer for patients following cancer treatment. Combination cancer prevention with green tea and cancer preventive drugs is proving especially beneficial for Japanese, who drink green tea every day. And finally, the stimulating comments of Prof. Jim Watson have encouraged green tea scientists.  相似文献   
9.
With recent advances in nanotechnology, debranched starch nanoparticle (DBS-NP) materials have attracted considerable interest from the fields of functional food, biomedicine, and material science, thanks to their small size, biodegradability, biocompatibility, sustainability, and non-hazardous effects on health and the environment. In this study, DBS-NP was fabricated using an eco-friendly method involving ultrasonication combined with recrystallization. The effects of ultrasonication and recrystallization times on the morphology, particle size, and crystal structure of the DBS-NPs were systematically investigated. Compared with the DBS-NPs prepared using ultrasonication treatment only, the DBS-NPs formed using ultrasonication combined with recrystallization were uniform in size and well distributed in aqueous solution. Moreover, the maximum encapsulation efficiency and loading capacity of the epigallocatechin gallate (EGCG) in the DBS-NPs with ultrasonication treatment reached 88.35% and 22.75%, respectively. The particle sizes of the EGCG@DBS-NP were more stable at a neutral pH (7.4) than at an acidic pH (2.1). The EGCG in the EGCG@DBS-NP displayed excellent radical scavenging activity and antibacterial effects, and cell assays demonstrated that the EGCG@DBS-NP was non-toxic and highly biocompatible.  相似文献   
10.
Influenza is one of the most serious respiratory viral infections worldwide. Although several studies have reported that green tea catechins (GTCs) might prevent influenza virus infection, this remains controversial. We performed a systematic review and meta-analysis of eight studies with 5048 participants that examined the effect of GTC administration on influenza prevention. In a random-effects meta-analysis of five RCTs, 884 participants treated with GTCs showed statistically significant effects on the prevention of influenza infection compared to the control group (risk ratio (RR) 0.67, 95% CIs 0.51–0.89, p = 0.005) without evidence of heterogeneity (I2 = 0%, p = 0.629). Similarly, in three cohort studies with 2223 participants treated with GTCs, there were also statistically significant effects (RR 0.52, 95% CIs 0.35–0.77, p = 0.001) with very low evidence of heterogeneity (I2 = 3%, p = 0.358). Additionally, the overall effect in the subgroup analysis of gargling and orally ingested items (taking capsules and drinking) showed a pooled RR of 0.62 (95% CIs 0.49–0.77, p = 0.003) without heterogeneity (I2 = 0%, p = 0.554). There were no obvious publication biases (Egger’s test (p = 0.138) and Begg’s test (p = 0.103)). Our analysis suggests that green tea consumption is effective in the prophylaxis of influenza infections. To confirm the findings before implementation, longitudinal clinical trials with specific doses of green tea consumption are warranted.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号