首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   1篇
物理学   4篇
  2015年   1篇
  2014年   1篇
  2008年   1篇
  2005年   1篇
排序方式: 共有4条查询结果,搜索用时 15 毫秒
1
1.
Gold and silver in dross were determined by energy‐dispersive X‐ray fluorescence technique. Sample was prepared by pressed pellet method using microcrystalline cellulose powder as binder, and a method of standard additions was used for quantification. Lβ X‐ray of gold (11.4 keV) and Kβ X‐ray of silver (24.9 keV) were used for analysis. The measured concentrations of gold and silver were 132 ± 8 and 1181 ± 84 mg kg?1, respectively. The results were validated by instrumental neutron activation analysis technique. The t‐test indicated that there was no significant difference between results obtained by the two techniques. Energy‐dispersive X‐ray fluorescence is a simple, precise and accurate technique for the determination of gold and silver in dross. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
2.
In some applications, laser cutting of wedge surfaces cannot be avoided in sheet metal processing and the quality of the end product defines the applicability of the laser-cutting process in such situations. In the present study, CO2 laser cutting of the wedge surfaces as well as normal surfaces (normal to laser beam axis) is considered and the end product quality is assessed using the international standards for thermal cutting. The cut surfaces are examined by the optical microscopy and geometric features of the cut edges such as out of flatness and dross height are measured from the micrographs. A neural network is introduced to classify the striation patterns of the cut surfaces. It is found that the dross height and out of flatness are influenced significantly by the laser output power, particularly for wedge-cutting situation. Moreover, the cut quality improves at certain value of the laser power intensity.  相似文献   
3.
The present work aimed at studying the dynamic behavior of melt ejection in laser cutting of 1 mm thick titanium sheet and to obtain dross-free cuts with minimum heat affected zone (HAZ). CO2 laser cutting of titanium sheet was carried out with continuous wave (CW) and pulsed mode laser operation with different shear gases namely argon, helium and nitrogen. Laser cutting with high frequency and low-duty cycle pulse mode operation produced dross-free cuts with no noticeable HAZ. Helium, because of its high heat convection and ability to generate high shear stress, produced laser-cuts with narrow HAZ and low dross, as compared to those produced with argon as the shear gas. Microscopic features of laser cut surfaces were analyzed and correlated with dynamic mechanism involved in laser cutting process. Process parameters for laser piercing, required for the initiation of fusion cut within the sheet, were also studied. Laser piercing requires either CW or high-duty cycle (>80%) pulse mode operation.  相似文献   
4.
Laser cutting of a rectangular geometry into aluminum alloy 2024 is carried out. Temperature and stress fields are predicted in the cutting section using the ABAQUS finite element code in line with the experimental conditions. Effect of the size of the rectangular geometry on the thermal stress fields is examined in the cutting section. Temperature predictions are validated through the thermocouple data. To identify the morphological changes in the cutting section, an experiment is carried out and the resulting cutting sections are examined under optical and scanning electron microscopes. It is found that temperature and stress fields are affected by the size of the rectangular cut geometry. Temperature and von Mises stress attains higher values for small size rectangular geometry as compared to its counterpart corresponding to the large size geometry. Laser cut sections are free from large size asperities including sideways burning and out-off flatness at the cut edges. Locally scattered some small dross attachments are observed at the kerf exit.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号