首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   206篇
  免费   3篇
  国内免费   1篇
化学   9篇
力学   123篇
综合类   1篇
数学   4篇
物理学   73篇
  2022年   1篇
  2021年   6篇
  2020年   5篇
  2019年   8篇
  2018年   8篇
  2017年   6篇
  2016年   9篇
  2015年   11篇
  2014年   3篇
  2013年   21篇
  2012年   11篇
  2011年   10篇
  2010年   9篇
  2009年   17篇
  2008年   11篇
  2007年   7篇
  2006年   8篇
  2005年   14篇
  2004年   12篇
  2003年   2篇
  2002年   8篇
  2001年   6篇
  2000年   7篇
  1998年   1篇
  1997年   3篇
  1996年   1篇
  1993年   2篇
  1992年   2篇
  1957年   1篇
排序方式: 共有210条查询结果,搜索用时 15 毫秒
1.
Turbulent flow simulation methods based on finite differences are attractive for their simplicity, flexibility and efficiency, but not always for accuracy or stability. This paper demonstrates that a good compromise is possible with the advected grid explicit (AGE) method. Starting from the same initial field as a previous spectral DNS, AGE method simulations of a planar turbulent wake were carried out as DNS, and then at three levels of reduced resolution. The latter cases were in a sense large‐eddy simulations (LES), although no specific sub‐grid‐scale model was used. Results for the two DNS methods, including variances and power spectra, were very similar, but the AGE simulation required much less computational effort. Small‐scale information was lost in the reduced resolution runs, but large‐scale mean and instantaneous properties were reproduced quite well, with further large reductions in computational effort. Quality of results becomes more sensitive to the value chosen for one of the AGE method parameters as resolution is reduced, from which it is inferred that the numerical stability procedure controlled by the parameter is acting in part as a sub‐grid‐scale model. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   
2.
Up to now,the most widely used method for transition prediction is the one based on linear stability theory.When it is applied to three-dimensional boundary layers,one has to choose the direction,or path,along which the growth rate of the disturbance is to be integrated.The direction given by using saddle point method in the theory of complex variable function is seen as mathematically most reasonable.However,unlike the saddle point method applied to water waves,here its physical meaning is not so obvious,as the frequency and wave number may be complex.And on some occasions,in advancing the integration of the growth rate of the disturbance,up to a certain location,one may not be able to continue the integration,because the condition for specifying the direction set by the saddle point method can no longer be satisfied on the basis of continuously varying wave number.In this paper,these two problems are discussed,and suggestions for how to do transition prediction under the latter condition are provided.  相似文献   
3.
This paper presents a simple and efficient procedure developed for tracing discontinuities in flow fields. Numerical experiments are carried out to test the new sensor coupled with the associated nonlinear WENO dissipation filter developed to suppress the numerical dissipation. The tests show that, for a problem containing shocks and vortices, the implementation of the new sensor and an optimized WENO scheme can obtain a stable and highly resolved solution. The numerical experiments demonstrated that the new filter scheme performs efficiently both in parallel and serial running for one‐dimensional inviscid flow problems. Direct numerical simulation of a Mach 5 turbulent boundary layer over a flat plate was carried out to demonstrate the applicability of the scheme to the DNS practices. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
4.
本文采用DNS方法,对惯性颗粒所见各向同性湍流中具有平均标量梯度的被动标量场统计特性进行了研究。结果表明:惯性对颗粒温度脉动强度,两相温度关联,自相关特性以及颗粒热流与两相交叉热流的统计特性具有明显的影响。在PDF方法的框架下,系统地推导了非等温气固两相流的PDF方程,且基于朗之万随机体系对方程进行了封闭,并利用前面的...  相似文献   
5.
Subgrid correlation of mixture fraction, Z, and progress variable, c, is investigated using direct numerical dimulation (DNS) data of a hydrogen lifted jet flame. Joint subgrid behaviour of these two scalars are obtained using a Gaussian-type filter for a broad range of filter sizes. A joint probability density function (JPDF) constructed using single-snapshot DNS data is compared qualitatively with that computed using two independent β-PDFs and a copula method. Strong negative correlation observed at different streamwise locations in the flame is captured well by the copula method. The subgrid contribution to the Zc correlation becomes important if the filter is of the size of the laminar flame thickness or larger. A priori assessment for the filtered reaction rate using the flamelet approach with independent β-PDFs and correlated JPDF is then performed. Comparison with the DNS data shows that both models provide reasonably good results for a range of filter sizes. However, the reaction rate computed using copula JPDF is found to have a better agreement with the DNS data for large filter sizes because the subgrid Zc correlation effect is included.  相似文献   
6.
Two-phase turbulent flows with the dispersed phase in the form of small, spherical particles are increasingly often computed with the large-eddy simulation (LES) of the carrier fluid phase, coupled to the Lagrangian tracking of particles. To enable further model development for LES with inertial particles subject to gravity, we consider direct numerical simulations of homogeneous isotropic turbulence with a large-scale forcing. Simulation results, both without filtering and in the a priori LES setting, are reported and discussed. A full (i.e. a posteriori) LES is also performed with the spectral eddy viscosity. Effects of gravity on the dispersed phase include changes in the average settling velocity due to preferential sweeping, impact on the radial distribution function and radial relative velocity, as well as direction-dependent modification of the particle velocity variance. The filtering of the fluid velocity, performed in spectral space, is shown to have a non-trivial impact on these quantities.  相似文献   
7.
This paper reports on the numerical investigations of Taylor-Couette flow of radius ratio η = 0.25–0.6 performed at low Reynolds numbers Re = 100–200. The inner cylinder and the bottom end-wall rotate, while the outer cylinder and the top end-wall are held fixed. A fully 3D DNS code based on the spectral Chebyshev – Fourier approximation is used. This study is complementary to those of Mullin and Blohm (Phys. of Fluids 2001, vol 13, 136–140) and Lopez et al. (J. Fluid Mech. 2004, vol 501, 327–354) where investigations have been performed for radius ratio 0.5. The 1-cell and 3-cell structures found by these authors are shown to exist for a wide range of radius ratios, and the transition processes between them are qualitatively similar. These structures show hysteresis, disappearing at saddle-node bifurcations which connect at a cusp point in the (Re, Γ) plane. This cusp exists for the entire range of 0.1 < η < 0.75, and it traces out a parabolic curve in the (Re, Γ) plane, reaching a minimum Re at η = 0.375. The detailed 3D DNS computations provide a lot of new information about such phenomena as the modulated rotating wave, the period doubling cascade and homoclinic collision. The results show that the period doubling bifurcation is important in the flow when the radius ratio is close to η = 0.375.  相似文献   
8.
The cycle to cycle combustion variability which is observed in spark-ignition engines is often caused by fluctuations of the early flame development. LES can be exploited for a better understanding and mastering of their origins. For that purpose appropriate models taking into account energy deposition, mixture ignition and transition to propagation are necessary requirements. This paper presents first DNS and LES of spark ignition with a real automotive coil and simplified pin-pin electrodes. The electrical circuit characteristics are provided by ISSIM while the energy deposition is modelled by Lagrangian particles. The ignition model is first evaluated in terms of initial spark radius on a pin-pin ignition experiment in pure air performed at CORIA and EM2C laboratories, showing that it pilots the radius of the torus formed by the initial shock wave. DNS of a quiescent lean propane/air mixture are then performed with this ignition system and a two-step mechanism. The impact of the modelled transferred energy during glow phase as well as the initial arc radius on the minimum ignition energy (MIE) are examined and compared to experimental values. Replacing the two-step chemistry by an analytically reduced mechanism leads to similar MIE but shows a different ignition kernel shape. Finally, LES of turbulent ignition using a Lagrangian arc model show a realistic prediction of the arc shape and its important role on the energy transfer location and thus on the flame kernel shape.  相似文献   
9.
10.
Direct numerical simulation (DNS) has been performed to study the channel flow over a backward‐facing step at a Reynolds number Reb=5600 based on the step height h and the inflow bulk velocity Ub. A dynamic method has been used in order to generate realistic turbulent inflow conditions. The results upstream of the step compared well with the fully developed channel flow. Downstream of the step our results show excellent agreement with experimental data. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号