首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
物理学   2篇
  2011年   1篇
  2010年   1篇
排序方式: 共有2条查询结果,搜索用时 15 毫秒
1
1.
The forced swimming test (FST) is a useful paradigm that is relatively quick and simple to perform and has been utilized to predict antidepressant activity based on learned helplessness as a model of depression. To date, few studies have used proton magnetic resonance spectroscopy (1H-MRS) to assess antidepressant effects in rats. The purpose of this study was to assess desipramine (DMI) effects on the left dorsolateral prefrontal cortex (DLPFC) of the rats, which were randomly assigned to three groups (control, n=10; FST+saline, n=10; FST+DMI, n=10), using single-voxel localization technique. All 1H-MRS experiments were performed on a Bruker 4.7-T scanner with 400 mm bore magnet, allowing for acquisition of in vivo 1H point-resolved spectroscopy spectra (TR/TE=3000/30 ms, number of data points=2048, NEX=512, voxel volume=27 μl, scan time=25 min). Proton metabolites were quantified automatically using LCModel software and were expressed as ratios to total creatine (Cr+PCr). Major target metabolites such as N-acetyl aspartate (NAA)+N-acetylaspartylglutamate (NAAG), glutamate+glutamine (Glu+Gln), glycerophosphorylcholine+phosphorylcholine (GPC+PCho), myo-inositol (mIns) and taurine (Tau) were successfully quantified with Cramer–Rao lower boundary ≤10%. There were significantly higher mIns/(Cr+PCr) and mIns/(NAA+NAAG) ratios in the FST+saline group compared to the control group. In the FST+DMI group, both mIns/(Cr+PCr) and mIns/(NAA+NAAG) ratios were significantly decreased to the level similar to those in the control group. No other metabolite ratios were significantly different among the three groups. Our findings suggest a possible role of altered mIns level within the left DLPFC of the rat model for depression.  相似文献   
2.
Recent findings of neurological functioning in autism spectrum disorder (ASD) point to altered brain connectivity as a key feature of its pathophysiology. The cortical underconnectivity theory of ASD (Just et al., 2004) provides an integrated framework for addressing these new findings. This theory suggests that weaker functional connections among brain areas in those with ASD hamper their ability to accomplish complex cognitive and social tasks successfully. We will discuss this theory, but will modify the term underconnectivity to ‘disrupted cortical connectivity’ to capture patterns of both under- and over-connectivity in the brain. In this paper, we will review the existing literature on ASD to marshal supporting evidence for hypotheses formulated on the disrupted cortical connectivity theory. These hypotheses are: 1) underconnectivity in ASD is manifested mainly in long-distance cortical as well as subcortical connections rather than in short-distance cortical connections; 2) underconnectivity in ASD is manifested only in complex cognitive and social functions and not in low-level sensory and perceptual tasks; 3) functional underconnectivity in ASD may be the result of underlying anatomical abnormalities, such as problems in the integrity of white matter; 4) the ASD brain adapts to underconnectivity through compensatory strategies such as overconnectivity mainly in frontal and in posterior brain areas. This may be manifested as deficits in tasks that require frontal–parietal integration. While overconnectivity can be tested by examining the cortical minicolumn organization, long-distance underconnectivity can be tested by cognitively demanding tasks; and 5) functional underconnectivity in brain areas in ASD will be seen not only during complex tasks but also during task-free resting states. We will also discuss some empirical predictions that can be tested in future studies, such as: 1) how disrupted connectivity relates to cognitive impairments in skills such as Theory-of-Mind, cognitive flexibility, and information processing; and 2) how connection abnormalities relate to, and may determine, behavioral symptoms hallmarked by the triad of Impairments in ASD. Furthermore, we will relate the disrupted cortical connectivity model to existing cognitive and neural models of ASD.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号