首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   370篇
  免费   10篇
  国内免费   19篇
化学   368篇
物理学   31篇
  2024年   2篇
  2023年   7篇
  2022年   13篇
  2021年   13篇
  2020年   16篇
  2019年   24篇
  2018年   14篇
  2017年   23篇
  2016年   28篇
  2015年   31篇
  2014年   34篇
  2013年   25篇
  2012年   32篇
  2011年   33篇
  2010年   20篇
  2009年   20篇
  2008年   9篇
  2007年   16篇
  2006年   7篇
  2005年   9篇
  2004年   10篇
  2003年   2篇
  2002年   2篇
  2001年   1篇
  2000年   2篇
  1997年   1篇
  1996年   1篇
  1990年   2篇
  1986年   1篇
  1982年   1篇
排序方式: 共有399条查询结果,搜索用时 31 毫秒
1.
Hexaphyrin(1.0.1.0.0.0) (isoamethyrin) undergoes a significant color change in the presence of UO22+, PuO22+, and NpO22+. The complexation of the first of these dioxo actinide cations was studied in semi-quantitative fashion in 1:1 MeOH-CH2Cl2. Under these conditions, the detection limit for UO22+ was found to be ca. 5.8 ppm by naked eye monitoring and <28 ppb by UV-vis spectroscopy. Isoamethyrin does not undergo a color change in the presence of most transition metals or when exposed to Gd(III). Isoamethyrin thus constitutes an attractive alternative to 2,2′(1,8-dihydroxy-3,6-disulfonaphthylene-2,7-bisazo)-bisbenzenarsonic acid (AzIII) and 2-(5-bromo-2-pyridylazo)-5-(diethylamino)phenol (BrPADAP), systems currently used as actinide cation sensors.  相似文献   
2.
《中国化学快报》2019,30(9):1659-1662
The development of efficient methods for the detection of hazardous and toxic elements is extremely important for environmental security and public health. In this work, we developed a facile colorimetric assaying system for Ag+ detection in aqueous solution. Chitosan-stabilized platinum nanoparticles (Ch-PtNPs) were synthesized and severed as an artificial oxidase to catalyze the oxidation of the substrate 3,3′,5,5′-tetramethylbenzidine (TMB) and generate color signal. In the presence of Ag+, due to the strong metallophilic interactions between Ag+ and Pt2+ on the surface of Ch-PtNPs, Ag+ can weaken the affinity to the substrates and inactivate the catalytic activity of Ch-PtNPs, leading to decreased absorbance signal to varying degrees depending on Ag+ amount. Combing the specific binding between Ch-PtNPs and Ag+ with signal amplification procedure based on the Ch-PtNPs-catalyzed TMB oxidation, a sensitive, selective, simple, cost-effective, and rapid detection method for Ag+ can be realized. Ag+ ions in tap and lake waters have been successfully detected. We ensured that the proposed method can be a potential alternative for Ag+ determination in environmental samples.  相似文献   
3.
A new optical CO2 sensor based on the luminescence intensity change of the europium(III) complex tris(thenoyltrifluoroacetonato) europium(III) dihydrate ([Eu(tta)3]) caused by the absorption change of various pH indicators—thymol blue, phenol red, or cresol red—with CO2 was developed and its CO2 sensing properties were investigated. For all the CO2 sensors using pH indicators the observed luminescence intensity from [Eu(tta)3] at 613 nm increased with increasing CO2 concentration. The linear calibration method based on the plot of (I100–I0)/(I–I0) versus the inverse of CO2 concentration was suggested, where I0 and I100 were luminescence intensities at 613 nm of the CO2 sensor film in 100% nitrogen and 100% gaseous CO2. In all cases the plots showed good linearity and the correlation factors of the plots, r2, were 0.991 for thymol blue, 0.990 for phenol red, and 0.998 for cresol red. The slopes of the plots (A/B) for thymol blue, phenol red, and cresol red were 2.2, 5.2, and 9.0%, respectively. The response times of the CO2 sensor film were 4.0 s for thymol blue, 4.4 s for phenol red, and 8.8 s for cresol red for switching from nitrogen to CO2, and the recovery times of films were 36 s for thymol blue, 39.2 s for phenol red, and 56.6 s for cresol red for switching from CO2 to nitrogen. The signal changes were fully reversible and hysteresis was not observed during the measurements. The highly sensitive CO2 sensor was developed using thymol blue as an indicator for the CO2-sensing probe.  相似文献   
4.
Amao Y  Komori T 《Talanta》2005,66(4):976-981
An optical CO2 sensor based on the overlay of the CO2 induced absorbance change of pH indicator dye α-naphtholphthalein in poly(isobutyl methacrylate) (polyIBM) layer with the fluorescence of tetraphenylporphyrin (TPP) in polystyrene layer is developed. The observed luminescence intensity from TPP at 655 nm increased with increasing the CO2 concentration. The ratio I100/I0 value of the sensing film consisting of α-naphtholphthalein in polyIBM and TPP in polystyrene layer, where I0 and I100 represent the detected luminescence intensities from a layer exposed to argon and CO2 saturated conditions, respectively, that the sensitivity of the sensor, is estimated to be 192. The response and recovery times of the sensing film are less than 6.0 s for switching from argon to CO2, and for switching from CO2 to argon. The signal changes are fully reversible and no hysterisis is observed during the measurements. The highly sensitive optical CO2 sensor based on fluorescence intensity changes of TPP due to the absorption change of α-naphtholphthalein in polyIBM layer with CO2 is achieved.  相似文献   
5.
《中国化学快报》2020,31(5):1133-1136
Due to the serious harm of diabetes to human health, development of sensitive assays for glucose level is of high significance for early prevention and treatment of diabetes. Currently, most conventional enzyme-based glucose sensors suffer from high cost and low stability due to the inherent defects of natural enzymes. Herein, we develop a pure nanozyme-based glucose detection method using Ag@Au core/shell triangular nanoplates (TNPs), which combines glucose oxidase (GOD)- and horseradish peroxidase (HRP)-like activities of the Au shell and inherent plasmonic properties of Ag TNPs. The sensing mechanism is based on the fact that the Au shell possessed GOD-like activity, enabling the oxidation of glucose to produce H2O2, which can further etch the silver core, leading to the decrease of absorbance at 800 nm and the color change from blue to colorless. Compared with the previous nanozymes-based glucose sensors, our method avoids the use of enzymes and organic chromogenic agent. Moreover, the stability of the Ag@Au core/shell TNPs is much better than that of Ag TNPs due to the protection by the coating of the Au shell. This method was successfully applied to the detection of urine samples from patients with diabetes, indicating its practical applicability for real sample analysis.  相似文献   
6.
Thabano JR  Jens CT  Sawula GM 《Talanta》2004,64(1):60-68
Fabrication of a macro segmented flow analysis (MSFA) system based on reconfiguration of the manifold by adjustment of the sample/reagent ratio, has been found to produce a sensitive method for orthophosphate analysis based on colorimetric detection at 880 nm. Optimization of sample tube length, reaction temperature and molybdate concentration in the carrier solutions has been carried out. The larger sample tube internal diameter led to the combined advantages of better sensitivities, wider working range and higher sample throughput over most existing methods. Using the optimized conditions of 50.0 cm sample tube length (1.6 mm i.d.), 37.0 °C reaction temperature and 0.0113 M molybdate concentration in the carrier solution, the calibration model for orthophosphate standard solutions was found to be linear (y = 0.04895x + 0.003561; correlation coefficient, r2=0.9970) over the working range 0.01-2.00 mg l−1 orthophosphate. The volume of the sample injected was 1.396 ml at a flow rate of 6.0 ml min−1. The sample throughput of this MSFA method was 40 samples per an hour, with a detection limit of 4.0 μg l−1, and %R.S.D.’s below 5%. The MSFA method was successfully applied to analysis of water and wastewater samples.  相似文献   
7.
Novel colorimetric receptors 1-[(2-hydroxy-5-bromo-benzylidene)-amino]-anthraquinone, 1-[(2-hydroxy-5-methyl-benzylidene)-amino]-anthraquinone, and 1-[(2-hydroxy-5-nitro-benzylidene)-amino]-anthraquinone have been synthesized as fluoride ion sensors. A color change was observed visually (naked-eye) upon addition of fluoride ions in organic solvents to solutions of the receptors.  相似文献   
8.
A new iodometric method for quantifying aqueous solutions of iodide-oxidizing and iodine-reducing substances, as well as plain iodine/iodide solutions, is presented. It is based on the redox potential of said solutions after reaction with iodide (or iodine) of known initial concentration. Calibration of the system and calculations of unknown concentrations was performed on the basis of developed algorithms and simple GWBASIC-programs. The method is distinguished by a short analysis time (2–3 min) and a simple instrumentation consisting of pH/mV meter, platinum and reference electrodes. In general the feasible concentration range encompasses 0.1 to 10–6 mol/L, although it goes down to 10–8 mol/L (0.001 mg Cl2/L) for oxidants like active chlorine compounds. The calculated imprecision and inaccuracy of the method were found to be 0.4–0.9% and 0.3–0.8%, respectively, resulting in a total error of 0.5–1.2%. Based on the experiments, average imprecisions of 1.0–1.5% at c(Ox)>10–5 M, 1.5–3% at 10–5 to 10–7 M, and 4–7% at <10–7 M were found. Redox-iodometry is a simple, precise, and time-saving substitute for the more laborious and expensive iodometric titration method, which, like other well-established colorimetric procedures, is clearly outbalanced at low concentrations; this underlines the practical importance of redox-iodometry.
An erratum to this article is available at .  相似文献   
9.
A new metal complex[MnL2](NO32·CH3CN(1) was synthesized by reaction of 4’-4-(l,2,4-triazol-l-yl)phenyl -2,2’:6’,2"-terpyridine(L) with manganese nitrate.The structure of the complex was determined by X-ray crystallography.The results of UV-vis studies showed that the complex exhibits colorimetric sensing ability for Fe3+,which can be observed by naked eye.  相似文献   
10.
In this study, a novel task-specific ionic liquid functionalized gold nanoparticle (TSIL-GNP) was successfully prepared and applied in the recognition of amino acids. Particularly, the surface of GNP was modified with the ionic liquid containing carbamido and ester group via thiol, which was characterized by Fourier transform infrared spectroscopy (FTIR) and transmission electron microscopy (TEM). The stability of this material in aqueous solution improves apparently and can remain unchanged for more than three months. The effect of pH was also discussed in this study. Attractive ionic interaction would effectively weaken intensity of the covalent coupling between the metal ion and the functional groups of amino acids. Thus, TSIL-GNP was successfully applied to recognizing serine, aspartic acid, lysine, arginine, and histidine in the presence of Cu2+ through distinctive color changes. Suspension would be generated once a spot of cysteine was added into the GNPs solution. Results indicated that it had a good linear relationship between extinction coefficients and concentration of amino acids in a wide range of 10−3–10−6 M. Moreover, the proposed strategy was successfully used to analyze the histidine in urinary samples. In brief, TSIL-GNP is a suitable substrate for discrimination of five amino acids in a rapid and simple way without sophisticated instruments.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号