首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17篇
  免费   0篇
化学   11篇
物理学   6篇
  2012年   1篇
  2011年   4篇
  2010年   1篇
  2008年   3篇
  2007年   1篇
  2006年   3篇
  2005年   2篇
  2003年   1篇
  2000年   1篇
排序方式: 共有17条查询结果,搜索用时 109 毫秒
1.
The mixed-valent compound YbBaCo4O7 is built up of Kagomé sheets of CoO4 tetrahedra, linked in the third dimension by a triangular layer of CoO4 tetrahedra in an analogous fashion to that found in the known geometrically frustrated magnets such as pyrochlores and SrCr9xGa12−9xO19 (SCGO). We have undertaken a study of the structural and magnetic properties of this compound using combined high-resolution powder neutron and synchrotron X-ray diffraction. YbBaCo4O7 undergoes a first-order trigonal→orthorhombic phase transition at 175 K. We show that this transition occurs as a response to a markedly underbonded Ba2+ site in the high-temperature phase and does not appear to involve charge ordering of Co2+/Co3+ ions in the tetrahedra. The symmetry lowering relieves the geometric frustration of the structure, and a long-range-ordered 3-D antiferromagnetic state develops below 80 K.  相似文献   
2.
Studies on La0.7Sr0.3Co1−xMnxO3 (x=0-0.5) compounds evidence that the interaction between Mn and Co ions in this system is antiferromagnetic super-exchange and not ferromagnetic (FM) double-exchange (DE). As a result, antiferromagnetism and magnetic glassiness develop steadily with increasing Mn content and the system becomes a spin glass at x∼0.1. Analyses of high-field magnetization data indicate that the system consists of two major phases: a metallic FM phase which magnetically saturates in rather low field, and an insulating non-FM phase which has a linear dependence of magnetization on magnetic field. In the low doping regime, the fraction of the non-FM component expands with temperature at the expense of the FM phase and becomes maximal at TC. Ferromagnetism reappears in highly doped (x≥0.2) compounds due to the presence of DE interaction between the Mn ions. The small volume fraction of the FM phase derived from the M(H) data in high-field region supports the coexistence of insulating and FM behaviors in the highly doped samples.  相似文献   
3.
The magnetic, transport and structural properties are studied for La0.83Sr0.17MnO3 and La0.82Sr0.18CoO3 single crystals with nearly the same doping and the metallic ground state. Their comparisons have shown that ferromagnetic clusters originate in the paramagnetic matrix below Т?>TC in both samples and exhibit similar properties. This suggests the possible universality of such phenomena in doped mixed-valence oxides of transition metals with the perovskite-type structure. The cluster density increases on cooling and plays an important role on the physical properties of these systems. The differences in cluster evolutions and scenarios of their insulator–metal transitions are related to different magnetic behaviors of the matrixes in these crystals that is mainly due to distinct spin states of the Mn3+ and Co3+ ions.  相似文献   
4.
Structural, magnetic, resistivity and thermal transport measurements have been performed to study the Mo-doping effect on a layered cobaltite Ca3Co4−xMoxO9(0≤x≤0.4) system. The results indicate that the low-temperature magnetic behavior of the system changes from a ferrimagnetic state to a spin-glass-like state upon Mo doping, which is due to the decrease in the average valence of Co ions. Moreover, all the Mo-doped samples have a higher resistivity and larger thermopower S compared with the Mo-free sample. The variation in the resistivity and thermopower between the Mo-doped and the Mo-free samples is dominated by the change in the carrier concentration of the samples. In the Mo-doped samples with x≥0.1, both the resistivity and thermopower decrease gradually with increasing Mo-doping level, which is suggested to mainly originate from the variation in the carrier mobility of the samples. In addition, an obvious thermopower upturn is observed in the S(T) curve of all the Mo-doped samples, which can be explained by the enhancement of spin-fluctuation induced by Mo-doping.  相似文献   
5.
Polycrystalline Ca3Co1.8M0.2O6 (M=Mn, Fe, Co, Ni, Cu) and Ca2.7Na0.3Co2O6 were synthesized by solid-state reaction to evaluate the effect of substitution on the thermoelectric properties of Ca3Co2O6. Substitution by Mn, Cu and Na appears to increase carrier density, given that electrical resistivity (ρ) and the Seebeck coefficient (S) were simultaneously reduced. Conversely, Fe substitution seems to reduce carrier density, resulting in a simultaneous increase in S and ρ. Cu and Na substitution resulted in a significant decrease in ρ due to enhancement of grain size and grain boundary connectivity, which could have a strong impact on ρ. Not only the intrinsic substitution effect on the electronic state but also this modification of the microstructure plays an important role in improvement of the thermoelectric power factor, particularly in the case of the Na-substituted sample.  相似文献   
6.
The second member of the Ruddlesden-Popper series, n=2 in Srn+1ConO3n+1, has been stabilized by substituting cerium for strontium leading to the pure compound Sr2.75Ce0.25Co2O7−δ. The oxygen vacancies of this phase can be partially filled by a post-annealing oxidizing treatment with δ decreasing from 1.1 to 0.3 for the as-prepared and oxidized phases, respectively. As the samples are oxidized from δ≈1.1 to 0.3, the a and b unit cell parameters decrease from 3.836 to 3.815 Å and from 20.453 to 20.047 Å, respectively. Despite the average value of the cobalt valence state, VCo≈+3.5, obtained in the oxidized Sr2.75Ce+40.25Co2O6.7 phase, a clear ferromagnetic state wit TC=175 K and MS=0.8 μB/Co is reached.  相似文献   
7.
The perovskite compounds of have been studied by means of NMR spectroscopy in powder samples prepared by the solid state reaction and sol–gel methods. The NMR signals were observed in the frequency range 250–650 MHz at 4.2 K in zero external magnetic field. A relatively narrow spectral line assigned to 55Mn in Mn4+ is situated around 270–320 MHz in all spectra. Additional spectral lines are observed at higher frequencies. Line intensities and forms are dependent on the cobalt concentration and preparation techniques.  相似文献   
8.
The “114” YBaCo4O7 cobaltite undergoes structural transition just beyond room temperature at TS∼310 K. Correspondingly, its signature in the physical properties is detected by T-dependent measurements of electrical resistivity, magnetic susceptibility and thermoelectric power. It is found that low-level substitutions of divalent (M=Zn2+) or trivalent (M=Ga3+, Al3+) cations for cobalt according to the YBaCo4−xMxO7 formula with x?0.4 have a strong impact upon this transition. On the one hand, Zn2+ substitutions preserve the transition but with TS decreasing as x increases. On the other hand, for x=0.2 Ga3+ or Al3+, the transition is suppressed, i.e., for only 5% trivalent foreign cation substituted for cobalt. Though at first, this contrasted behaviour between divalent and trivalent substituting cations appears to be linked to the opposite evolution of hole carriers “Co3+” concentration with x, a possible destabilization of 3Co2+: 1Co3+ charge ordering induced by the M3+ cations is considered.  相似文献   
9.
The study of the oxidation of the “114” orthorhombic cobaltite CaBaCo4O7, using first electrochemistry and then soft chemistry based on oxidation by NaClO, has allowed a new phase, CaBaCo4O7.50, to be prepared topotactically. The structural study of this phase shows that its hexagonal structure, closely related to that of orthorhombic CaBaCo4O7, is curiously similar to that of the members of the LnBaCo4O7 series, in spite of its excess oxygen. Its magnetic study shows that this phase, like CaBaCo4O7, is ferrimagnetic with the same TC (60 K), but differently exhibits an unusual magnetic hysteresis. This exceptional behavior of CaBaCo4O7 with respect to oxidation as well as the magnetic properties of CaBaCo4O7.50 is interpreted in terms of the presence of defects due to oxidation.  相似文献   
10.
We report results of our muon spin relaxation measurements in the series of polycrystalline compounds Pr1−xSrxCoO3 (x=0.3, 0.4 and 0.5) and Nd1−xSrxCoO3 (x=0.3 and 0.5). For the Pr-based samples our data clearly indicate the existence of two magnetic transitions, as also inferred from macroscopic measurements. While the high temperature transition is typical for cobaltites (∼200 K), the low temperature one is unusual. In our experiments it occurs below about 120 K and it manifests itself as a change in the slope of the temperature variation of the muon spin depolarization rate λ(T). For the Nd-based samples we found an increase of the muon spin depolarization rate below 45 K, temperature at which the sample is ferrimagnetic, when the Nd sublattice coupled antiparallel to the Co lattice. No phase separation could be evidenced in our samples by μSR experiments.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号