首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6179篇
  免费   673篇
  国内免费   543篇
化学   1848篇
晶体学   42篇
力学   1368篇
综合类   34篇
数学   845篇
物理学   3258篇
  2024年   23篇
  2023年   159篇
  2022年   119篇
  2021年   147篇
  2020年   239篇
  2019年   187篇
  2018年   153篇
  2017年   210篇
  2016年   185篇
  2015年   236篇
  2014年   325篇
  2013年   390篇
  2012年   298篇
  2011年   389篇
  2010年   292篇
  2009年   382篇
  2008年   416篇
  2007年   384篇
  2006年   368篇
  2005年   259篇
  2004年   261篇
  2003年   249篇
  2002年   216篇
  2001年   170篇
  2000年   171篇
  1999年   134篇
  1998年   149篇
  1997年   115篇
  1996年   104篇
  1995年   88篇
  1994年   70篇
  1993年   69篇
  1992年   65篇
  1991年   66篇
  1990年   43篇
  1989年   39篇
  1988年   29篇
  1987年   29篇
  1986年   24篇
  1985年   32篇
  1984年   21篇
  1983年   9篇
  1982年   20篇
  1981年   12篇
  1980年   14篇
  1979年   7篇
  1978年   5篇
  1977年   4篇
  1976年   3篇
  1973年   7篇
排序方式: 共有7395条查询结果,搜索用时 15 毫秒
1.
The evolution of surface gravity waves is driven by nonlinear interactions that trigger an energy cascade similarly to the one observed in hydrodynamic turbulence. This process, known as wave turbulence, has been found to display anomalous scaling with deviation from classical turbulent predictions due to the emergence of coherent and intermittent structures on the water surface. In the ocean, waves are spread over a wide range of directions, with a consequent attenuation of the nonlinear properties. A laboratory experiment in a large wave facility is presented to discuss the sensitivity of wave turbulence on the directional properties of model wave spectra. Results show that the occurrence of coherent and intermittent structures become less likely with the broadening of the wave directional spreading. There is no evidence, however, that intermittency completely vanishes.  相似文献   
2.
We extend our previous results characterizing the loading properties of a diffusing passive scalar advected by a laminar shear flow in ducts and channels to more general cross‐sectional shapes, including regular polygons and smoothed corner ducts originating from deformations of ellipses. For the case of the triangle and localized, cross‐wise uniform initial distributions, short‐time skewness is calculated exactly to be positive, while long‐time asymptotics shows it to be negative. Monte Carlo simulations confirm these predictions, and document the timescale for sign change. The equilateral triangle appears to be the only regular polygon with this property—all others possess positive skewness at all times. Alternatively, closed‐form flow solutions can be constructed for smooth deformations of ellipses, and illustrate how both nonzero short‐time skewness and the possibility of multiple sign switching in time is unrelated to domain corners. Exact conditions relating the median and the skewness to the mean are developed which guarantee when the sign for the skewness implies front (more mass to the right of the mean) or back (more mass to the left of the mean) “loading” properties of the evolving tracer distribution along the pipe. Short‐ and long‐time asymptotics confirm this condition, and Monte Carlo simulations verify this at all times. The simulations are also used to examine the role of corners and boundaries on the distribution for short‐time evolution of point source , as opposed to cross‐wise uniform, initial data.  相似文献   
3.
Defects play a central role in controlling the electronic properties of two-dimensional (2D) materials and realizing the industrialization of 2D electronics. However, the evaluation of charged defects in 2D materials within first-principles calculation is very challenging and has triggered a recent development of the WLZ (Wang, Li, Zhang) extrapolation method. This method lays the foundation of the theoretical evaluation of energies of charged defects in 2D materials within the first-principles framework. Herein, the vital role of defects for advancing 2D electronics is discussed, followed by an introduction of the fundamentals of the WLZ extrapolation method. The ionization energies (IEs) obtained by this method for defects in various 2D semiconductors are then reviewed and summarized. Finally, the unique defect physics in 2D dimensions including the dielectric environment effects, defect ionization process, and carrier transport mechanism captured with the WLZ extrapolation method are presented. As an efficient and reasonable evaluation of charged defects in 2D materials for nanoelectronics and other emerging applications, this work can be of benefit to the community.  相似文献   
4.
5.
It is believed that there are more fundamental gauge symmetries beyond those described by the Standard Model of particle physics. The scales of these new gauge symmetries are usually too high to be reachable by particle colliders. Considering that the phase transition (PT) relating to the spontaneous breaking of new gauge symmetries to the electroweak symmetry might be strongly first order, we propose considering the stochastic gravitational waves (GW) arising from this phase transition as an indirect way of detecting these new fundamental gauge symmetries. As an illustration, we explore the possibility of detecting the stochastic GW generated from the PT of \begin{document}$ {\bf{B}}-{\bf{L}}$\end{document} in the space-based interferometer detectors. Our study demonstrates that the GW energy spectrum is reachable by the LISA, Tianqin, Taiji, BBO, and DECIGO experiments only for the case where the spontaneous breaking of \begin{document}$ {\bf{B}}-{\bf{L}}$\end{document} is triggered by at least two electroweak singlet scalars.  相似文献   
6.
7.
陈小刚  宋金宝 《中国物理》2006,15(4):756-766
This paper studies the random internal wave equations describing the density interface displacements and the velocity potentials of N-layer stratified fluid contained between two rigid walls at the top and bottom. The density interface displacements and the velocity potentials were solved to the second-order by an expansion approach used by Longuet-Higgins (1963) and Dean (1979) in the study of random surface waves and by Song (2004) in the study of second- order random wave solutions for internal waves in a two-layer fluid. The obtained results indicate that the first-order solutions are a linear superposition of many wave components with different amplitudes, wave numbers and frequencies, and that the amplitudes of first-order wave components with the same wave numbers and frequencies between the adjacent density interfaces are modulated by each other. They also show that the second-order solutions consist of two parts: the first one is the first-order solutions, and the second one is the solutions of the second-order asymptotic equations, which describe the second-order nonlinear modification and the second-order wave-wave interactions not only among the wave components on same density interfaces but also among the wave components between the adjacent density interfaces. Both the first-order and second-order solutions depend on the density and depth of each layer. It is also deduced that the results of the present work include those derived by Song (2004) for second-order random wave solutions for internal waves in a two-layer fluid as a particular case.  相似文献   
8.
The excitation of eigen surface waves by tubular electron beams in cylindrical discharge devices is studied. The influence of the wave‐field azimuthal structure on the excitation efficiency and nonlinear stage of the plasmabeam instability is investigated both numerically and analytically. Analytical expressions for the saturation amplitude and excitation efficiency of the wave under study are derived. They are found to agree well with results obtained by numerical modelling of the plasma‐beam interaction presented in this paper. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   
9.
Charge transport is one important example of signal transduction in a protein which is responsible for action at a distance, and is a fundamental process in biochemical action. A model is presented in which electronic effects interact with motional processes to combine into a bifunctional model. This model is investigated with new detailed molecular dynamics calculations and successfully explains such action at a distance. Received 1st February 2002 / Received in final form 26 May 2002 Published online 13 September 2002  相似文献   
10.
In the present paper new results of modeling and experimental investigation on millimeter wave subsurface tomography are submitted. Tomographic algorithm is employed for imaging of subsurface objects in the case when conductivity of probed medium is not equal to zero. The possibilities and restrictions of this algorithm for image processing are shown both as a result of modeling and as a result of experiments. A new tomography setup allowing obtaining images of different inhomogeneities in dielectric media is considered.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号