首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   48篇
  免费   0篇
  国内免费   3篇
化学   19篇
力学   5篇
物理学   27篇
  2022年   4篇
  2021年   1篇
  2020年   2篇
  2015年   3篇
  2014年   2篇
  2013年   3篇
  2012年   1篇
  2011年   7篇
  2010年   5篇
  2009年   5篇
  2008年   7篇
  2007年   4篇
  2005年   2篇
  2004年   1篇
  2003年   1篇
  2002年   1篇
  2001年   2篇
排序方式: 共有51条查询结果,搜索用时 208 毫秒
1.
There would be a major effect on the cartilage regeneration characteristics of ceramic material in a substrate implant requiring biologically active biomaterials and the reinforcement phase. At this moment, we produced collagen-hyaluronic acid @ hydroxyapatite-halloysite nanotube-single walled carbon nanotube composites, which is a successful technique for making a scaffold with a superior counter for cartilage property. FTIR, XRD, and SEM-EDAX were used to perform morphological and structural studies. The prepared composite's surface feature was investigated and discovered by HRTEM-SAED analysis, and it observed porous nature. The simulated body fluids (SBF) assessment of the materials was noticed their bioactivity and chondrocytes to determine their biocompatibility. Hybrid composite displayed promise for cartilage tissue engineering despite mesenchymal stem cells compatibility effect and magnificently demonstrated an antibacterial effect without antibiotics. The live/dead cells analysis shows that the composite can significantly improve mesenchymal stem cells, and the composite has the potential ability for cartilage regeneration. The above characteristics make the material quite interesting and important in the area for regenerative medicinal uses.  相似文献   
2.
The aging process induces progressive and irreversible changes in the structural and functional organization of animals. The objective of this study was to evaluate the effects of aging on the structure and composition of the extracellular matrix of the arytenoid cartilage found in the larynx of male bullfrogs (Lithobates catesbeianus) kept in captivity for commercial purposes. Animals at 7, 180 and 1080 days post-metamorphosis (n = 10/age) were euthanized and the cartilage was removed and processed for structural and biochemical analysis. For the structural analyses, cartilage sections were stained with picrosirius, toluidine blue, Weigert’s resorcin-fuchsin and Von Kossa stain. The sections were also submitted to immunohistochemistry for detection of collagen types I and II. Other samples were processed for the ultrastructural and cytochemical analysis of proteoglycans. Histological sections were used to chondrocyte count. The number of positive stainings for proteoglycans was quantified by ultrastructural analysis. For quantification and analysis of glycosaminoglycans were used the dimethyl methylene blue and agarose gel electrophoresis methods. The chloramine T method was used for hydroxyproline quantification. At 7 days, basophilia was observed in the pericellular and territorial matrix, which decreased in the latter over the period studied. Collagen fibers were arranged perpendicular to the major axis of the cartilaginous plate and were thicker in older animals. Few calcification areas were observed at the periphery of the cartilage specimens in 1080-day-old animals. Type II collagen was present throughout the stroma at the different ages. Elastic fibers were found in the stroma and perichondrium and increased with age in the two regions. Proteoglycan staining significantly increased from 7 to 180 days and reduced at 1080 days. The amount of total glycosaminoglycans was higher in 180-day-old animals compared to the other ages, with marked presence of chondroitin- and dermatan-sulfate especially in this age. The content of hydroxyproline, which infers the total collagen concentration, was higher in 1080-day-old animals compared to the other ages. The results demonstrated the elastic nature of the arytenoid cartilage of L. catesbeianus and the occurrence of age-related changes in the structural organization and composition of the extracellular matrix. These changes may contribute to alter the function of the larynx in the animal during aging.  相似文献   
3.
丁建勋  常非  王金成 《高分子科学》2014,32(12):1590-1601
Poly(lactide-co-glycolide)-poly(ethylene glycol)-poly(lactide-co-glycolide)(PLGA-PEG-PLGA) triblock copolymer was synthesized through the ring-opening polymerization of LA and GA with PEG as macroinitiator and stannous octoate as catalyst. The amphiphilic copolymer self-assembled into micelles in aqueous solutions, and formed hydrogels as the increase of temperature at relatively high concentrations(〉 15 wt%). The favorable degradability of the hydrogel was confirmed by in vitro and in vivo degradation experiments. The good cellular and tissular compatibilities of the thermogel were demonstrated. The excellent adhesion and proliferation of bone marrow mesenchymal stem cells endowed PLGA-PEGPLGA thermogelling hydrogel with fascinating prospect for cartilage tissue engineering.  相似文献   
4.
介绍了海藻酸盐水溶液的凝胶化及其临界行为和松弛临界指数n.提出了将凝胶化按高分子的分子链长短分为生长型和交联型两类,前者为无规交联,符合逾渗连接的条件;后者大分子链间交联,不符合无规逾渗连接的条件.介绍了微囊化细胞载体、预成型支架和可注射支架,能够为软骨细胞提供良好的三维生长环境;通过LbL、二价离子交联等自组装技术,海藻酸能够实现对多种类型药物的包埋和控释.  相似文献   
5.
Our shape is defined and maintained by the connective tissues (skin, tendons, cartilages, blood vessels, etc.) or more precisely by their extracellular matrices. These highly ordered supramolecular organisations are modules of protein fibrils held together by elastic carbohydrate strings. I called these the ‘shape modules.’ The ‘laws.’ which underpin this tissue jigsaw, the changes which come with age and the insight that the concepts give in economically important disorders such as osteoarthrosis begin to provide a new and coherent picture stretching across the animal world and its evolution. This structure/function picture is built on biochemical analyses, which developed into histochemical microscopy and thence into electron histochemistry, and from nuclear magnetic resonance (NMR), molecular modelling and computer simulations on the physicochemical and biomechanical side. As usual, originality bred dissent.  相似文献   
6.
Image contrast is calculated by inputting experimental 2D T1T2 relaxation spectra into the ODIN software interface. The method involves characterising a magnetic resonance imaging pulse sequence with a “relaxation signature” which describes the sensitivity of the sequence to relaxation and is independent of sample parameters. Maximising (or minimising) the overlap between the experimental 2D T1T2 relaxation spectra and the relaxation signature can then be used to maximise image contrast. The concept is illustrated using relaxation signatures for the echo planar imaging and Turbo spin-echo imaging sequences, together with in-vitro 2D T1T2 spectra for liver and cartilage.  相似文献   
7.
The application of biomolecular magnetic resonance imaging becomes increasingly important in the context of early cartilage changes in degenerative and inflammatory joint disease before gross morphological changes become apparent. In this limited technical report, we investigate the correlation of MRI T1, T2 and T1ρ relaxation times with quantitative biochemical measurements of proteoglycan and collagen contents of cartilage in close synopsis with histologic morphology. A recently developed MRI sequence, T1ρ, was able to detect early intracartilaginous degeneration quantitatively and also qualitatively by color mapping demonstrating a higher sensitivity than standard T2-weighted sequences. The results correlated highly with reduced proteoglycan content and disrupted collagen architecture as measured by biochemistry and histology. The findings lend support to a clinical implementation that allows rapid visual capturing of pathology on a local, millimeter level. Further information about articular cartilage quality otherwise not detectable in vivo, via normal inspection, is needed for orthopedic treatment decisions in the present and future.  相似文献   
8.
The depth-wise variation of T(2) relaxation time is known to reflect the collagen network architecture in cartilage, while the delayed Gadolinium Enhanced MRI of Cartilage (dGEMRIC) technique is sensitive to tissue proteoglycan (PG) concentration. As the cartilage PG content varies along the tissue depth, the depth-dependent accumulation of the contrast agent may affect the inherent T(2) of cartilage in a nonconstant manner. Therefore, T(2) and dGEMRIC are typically measured in separate MRI sessions. In the present in vitro MRI study at 9.4 T, depth-wise T(2) profiles and collagenous zone thicknesses as determined from T(2) maps in the absence and presence of Gd-DTPA(2-) (T(2) and T(2Gd), respectively) were compared in samples of intact human articular cartilage (n=65). These T(2) measures were further correlated with birefringence (BF) of polarized light microscopy (PLM) to quantify the ability of MRI to predict the properties of the collagen fibril network. The reproducibility of the T(2) measurement in the current setup was also studied. Typical tri-laminar collagen network architecture was observed both with and without Gd-DTPA(2-). The inverse of BF (1/BF) correlated significantly with both T(2) and T(2Gd) (r=0.91, slope=0.56 and r=0.90, slope=0.63), respectively. The statistically significant linear correlations between zone thicknesses as determined from T(2) and T(2Gd) were r=0.55 (slope=0.49), r=0.74 (slope=0.71) and r=0.95 (slope=0.94) for superficial, middle and deep tissue zones, respectively. Reproducibility of the T(2) measurement was worst for superficial cartilage. Consistent with PLM, T(2) and T(2Gd) measurements reveal highly similar depth-dependent information on collagen network in intact human cartilage. Thus, dGEMRIC and T(2) measurements in one MRI session are feasible for intact articular cartilage in vitro.  相似文献   
9.
To assess the reproducibility of quantitative measurements of cartilage morphology and trabecular bone structure of the knee at 7 T, high-resolution sagittal spoiled gradient-echo images and high-resolution axial fully refocused steady-state free-precession (SSFP) images from six healthy volunteers were acquired with a 7-T scanner. The subjects were repositioned between repeated scans to test the reproducibility of the measurements. The reproducibility of each measurement was evaluated using the coefficient(s) of variation (CV). The computed CV were 1.13% and 1.55% for cartilage thickness and cartilage volume, respectively, and were 2.86%, 1.07%, 2.27% and 3.30% for apparent bone volume over total volume fraction (app.BV/TV), apparent trabecular number (app.Tb.N), apparent trabecular separation (app.Tb.Sp) and apparent trabecular thickness (app.Tb.Th), respectively. The results demonstrate that quantitative assessment of cartilage morphology and trabecular bone structure is reproducible at 7 T and motivates future musculoskeletal applications seeking the high-field strength's superior signal-to-noise ratio.  相似文献   
10.
Depth and orientational dependencies of microscopic magnetic resonance imaging (MRI) T(2) and T(1ρ) sensitivities were studied in native and trypsin-degraded articular cartilage before and after being soaked in 1 mM Gd-DTPA(2-) solution. When the cartilage surface was perpendicular to B(0), a typical laminar appearance was visible in T(2)-weighted images but not in T(1ρ)-weighted images, especially when the spin-lock field was high (2 kHz). At the magic angle (55°) orientation, neither T(2)- nor T(1ρ)-weighted image had a laminar appearance. Trypsin degradation caused a depth- and orientational-dependent T(2) increase (4%-64%) and a more uniform T(1ρ) increase at a sufficiently high spin-lock field (55%-81%). The presence of the Gd ions caused both T(2) and T(1ρ) to decrease significantly in the degraded tissue (6%-38% and 44%-49%, respectively) but less notably in the native tissue (5%-10% and 16%-28%, respectively). A quantity Sensitivity was introduced that combined both the percentage change and the absolute change in the relaxation analysis. An MRI experimental protocol based on two T(1ρ) measurements (without and with the presence of the Gd ions) was proposed to be a new imaging marker for cartilage degradation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号