首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   88篇
  免费   7篇
  国内免费   28篇
化学   109篇
晶体学   1篇
综合类   4篇
物理学   9篇
  2023年   4篇
  2022年   6篇
  2021年   10篇
  2020年   10篇
  2019年   8篇
  2018年   8篇
  2017年   5篇
  2016年   3篇
  2015年   1篇
  2014年   2篇
  2013年   10篇
  2012年   4篇
  2011年   3篇
  2010年   7篇
  2009年   9篇
  2008年   7篇
  2007年   5篇
  2006年   6篇
  2005年   3篇
  2004年   2篇
  2003年   1篇
  2002年   2篇
  1998年   2篇
  1994年   1篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
排序方式: 共有123条查询结果,搜索用时 15 毫秒
1.
根据氯离子型层状复合氢氧化物(LDH-Cl)制备过程中溶液浓度变化的监测结果和不同反应进程时产物的EDS、IR、XRD、TEM、TG-DTA表征结果,研究了合成LDH-Cl的共沉淀反应动力学特征及机理.实验结果表明, LDH-Cl的生成符合多核层表面反应动力学模型;反应过程中LDH的晶胞参数c从2.421 nm变为2.399 nm,通道高度h由0.3321 nm减小为0.3228 nm,粒子直径Da由6.40 nm增大为15.16 nm, Dc由7.43 nm增大到10.93 nm,纵横比由0.86增大为1.39; IR和TG-DTA特征变化表明了层板对阴离子作用的强度和层板的结构稳定性随反应进程而提高.  相似文献   
2.
薄层扫描法测定冬眠过程中刺猬活性组织酶的周期变化冯金城(天津师范大学天津300074)孙金生(天津水产研究所天津300221)1前言为了跟踪观察刺猬在冬眠过程中体内乳酸脱氢酶的周期性变化,利用薄层扫描仪测定了其相关的组织同工酶的差异。实践证明,此法简...  相似文献   
3.
One of the most common problems in wounds is delayed healing and complications such as infection. Therefore, the need for novel materials accelerates the healing of wounds especially abdominal wounds after surgery besides high efficiency and safety is mandatory. The rate of wound healing, anti-inflammatory and biocompatibility of Zn-Al LDH (Zn-Al layer double hydroxide) alone and loaded with Curcumin (Zn-Al LDH/Curcumin) was screened via in-vivo assays through intramuscular implantation in rat abdominal wall with intact peritoneum cavity. The implanted drugs were formed through Curcumin loaded into LDH of Zn-Al with drug release of 56.78 ± 1.51% within 24 h. The synthesized nanocomposite was characterized by (TGA/DTA) thermal analysis, (XRD) X-ray diffraction, (FESEM) Field emission scanning electron microscopy, (HRTEM) high resolution transmission electron microscope, energy dispersive X-ray (EDX) and low-temperature N2 adsorption, pore volume and average pore size distribution. The integrity of blood circulation, inflammatory signs, wound healing rate, capacity of tissue integration, antigenicity and composite biocompatibility, auto fluorescence ability of collagen bundles and the tensile strength of the muscle were assessed histopathologically after 7 and 30 days’ post-implantation. Excellent wound healing ability was achieved with shortest length between the wound gap edges and higher tensile strength of the muscle. Besides emit florescence very well followed by good healing and tensile muscles strength in Curcumin while very low strength with scar formation in Zn-Al LDH/Curcumin in both acute and chronic wound. No signs of inflammation in Curcumin & Zn-Al LDH. No vessels obstruction or bleeding observed in both Zn-Al LDH and Curcumin more than Zn-Al LDH/Curcumin and control which examined through candling. Good healing & infiltrated immune cells in same groups through histopathological examination. This work supports the anti-inflammatory, wound healing and biocompatibility of both LDH and Curcumin with living matter, increasing their biomedical applications in this era with safety and increasing efficacy with prolonged drug release.  相似文献   
4.
LDH/Tris/Pd (CaAl‐layered double hydroxide/tris (hydroxymethyl)aminomethane/palladium) was synthesized and appraised for its catalytic activity towards the degradation of two selected azo dyes. The decolorization of azo dyes, acid red 18 (AR 18) and reactive yellow 15 (RY 15), requires considerably small amounts of synthesized catalyst. Kinetic studies show that the catalytic decolorization of these azo dyes follows the first order kinetic model. The reported method is simple and applicable; in addition, the stable catalyst can efficiently decolorize model azo dyes with good recyclability. Therefore, LDH/Tris/Pd can be accepted as the possible component for the utilization in wastewater treatment.  相似文献   
5.
In this study, we demonstrate that an Mn-doped ultrathin Ni-MOF nanosheet array on nickel foam (Mn0.1-Ni-MOF/NF) serves as a highly capacitive and stable supercapacitor positive electrode. The Mn0.1-Ni-MOF/NF shows an areal capacity of 6.48 C cm−2 (specific capacity C: 1178 C g−1) at 2 mA cm−2 in 6.0 m KOH, outperforming most reported MOF-based materials. More importantly, it possesses excellent cycle stability to maintain 80.6 % capacity after 5000 cycles. An asymmetric supercapacitor device utilizing Mn0.1-Ni-MOF/NF as the positive electrode and activated carbon as the negative electrode attains a high energy density of 39.6 Wh kg−1 at 143.8 Wkg−1 power density with a capacitance retention of 83.6 % after 5000 cycles.  相似文献   
6.
We investigated the adsorption of heavy metal ions on a nanostructured coating of zinc-aluminum layered double hydroxides (Zn-Al LDHs) grown on aluminum foam by one-step hydrothermal process. This approach aimed to increase the interactive surface and provide a more practical medium for removal of toxic heavy metals from aqueous media. The foam coated with LDH was characterized by using scanning electron microscopy and X-ray diffraction. After immersion in a copper-rich water solution, X-ray photoelectron spectroscopy demonstrated the occurrence of adsorbed copper on the LDH-coated foam with two oxidation states: particles of metallic copper Cu0 with oxidized surface Cu+1. X-ray diffraction showed the presence of Cu+2 in the LDH structure.  相似文献   
7.
8.
Tuning the interior chemical composition of layered double hydroxides (LDHs) via lattice engineering route is a unique approach to enable multifunctional applications of LDHs. In this regard, the exfoliated 2D LDH nanosheets coupled with various guest species lead to the lattice-engineered LDH-based multifunctional self-assembly with precisely tuned chemical composition. This article reports the synthesis and characterization of mesoporous zinc–chromium-LDH (ZC-LDH) hybridized with isopolyoxovanadate nanohybrids (ZCiV) via lattice-engineered self-assembly between delaminated ZC-LDH nanosheets and isopolyoxovanadate (iPOV) anions. Electrostatic self-assembly between 2D ZC-LDH monolayers and 0D iPOV significantly altered structural, morphological, and surface properties of ZC-LDH. The structural and morphological study demonstrated the formation of mesoporous interconnected sheet-like architectures composed of restacked ZCiV nanosheets with expanded surface area and interlayer spacing. In addition, the ZCiV nanohybrid resistive elements were used as a room-temperature gas sensor. The selectivity of ZCiV nanohybrid was tested for various oxidizing (SO2, Cl2, and NO2) gases and reducing (LPG, CO, H2, H2S, and NH3) gases. The optimized ZCiV nanohybrid demonstrated highly selective SO2 detection with the maximum SO2 response (72%), the fast response time (20 s), low detection limit (0.1 ppm), and long-term stability at room temperature (27 ± 2 °C). Of prime importance, ZCiV nanohybrids exhibited moderately affected SO2 sensing responses with high relative humidity conditions (80%–95%). The outstanding SO2 sensing performance of ZCiV is attributed to the active surface gas adsorptive sites via plenty of mesopores induced by a unique lattice-engineered interconnected sheet-like microstructure and expanded interlayer spacing.  相似文献   
9.
The application of layered double hydroxide (LDH) nanomaterials as catalysts has attracted great interest due to their unique structural features. It also triggered the need to study their fate and behavior in the aquatic environment. In the present study, Zn-Fe nanolayered double hydroxides (Zn-Fe LDHs) were synthesized using a co-precipitation method and characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), and nitrogen adsorption-desorption analyses. The toxicity of the home-made Zn-Fe LDHs catalyst was examined by employing a variety of aquatic organisms from different trophic levels, namely the marine photobacterium Vibrio fischeri, the freshwater microalga Pseudokirchneriella subcapitata, the freshwater crustacean Daphnia magna, and the duckweed Spirodela polyrhiza. From the experimental results, it was evident that the acute toxicity of the catalyst depended on the exposure time and type of selected test organism. Zn-Fe LDHs toxicity was also affected by its physical state in suspension, chemical composition, as well as interaction with the bioassay test medium.  相似文献   
10.
ZHS@ Mg‐Al‐LDH and ZHS@α‐ZrP hybrid materials were prepared by electrostatically loading zinc hydroxystannate (ZHS) on the layered compounds (Mg‐Al‐LDH and α‐ZrP) in this work. With the addition of 2 wt% of the two hybrid materials to epoxy resin (EP), respectively, the fire hazard of EP and its composites were investigated. The limiting oxygen index (LOI) of ZHS@ Mg‐Al‐LDH/EP composite increased by 19.0% compared with pure EP, while its peak heat release rate (PHRR), total heat release rate (THR), and peak smoke release rate (SPR) decreased by 48.2%, 20.8%, and 21.6%, respectively, evidenced by the results of the LOI test and cone calorimetry test (CCT). The LOI of ZHS@α‐ZrP/EP composite increased by 20.4%, and its PHRR, THR, and SPR decreased by 47.7%, 21.4%, and 27.1%, respectively. Both hybrid materials showed prominent flame retardant and smoke suppressing properties. In addition, through the analysis of the TG‐IR and Raman spectrum of residual char, the specific mechanism of flame retardance and smoke suppression was explored.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号