首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   71篇
  免费   0篇
化学   3篇
物理学   68篇
  2013年   68篇
  2007年   2篇
  2005年   1篇
排序方式: 共有71条查询结果,搜索用时 843 毫秒
1.
《Composite Interfaces》2013,20(1):77-90
Phosphate glass fiber of the composition 20Na2O–24MgO–16CaO–40P2O5 was produced using an in-house fiber drawing rig. The interfacial properties of the phosphate glass fiber/poly(caprolactone) (PCL) system were measured using the single fiber fragmentation test (SFFT). The system was calibrated using E-glass fibers and polypropylene system. This gave an interfacial shear strength (IFSS) of 4.1 MPa, which agrees well with other published data. The IFSS for the unsized (as drawn) phosphate glass fiber/PCL system was found to be 1.75 MPa. Fibers treated with 3-aminopropyl-triethoxy silane (APS) showed an IFSS of 3.82 MPa. X-ray photoelectron spectroscopic (XPS) analysis of unsized and silane sized fibers established the presence of silane on the fiber surface. Degradation tests of the silane treated fiber/PCL samples were carried out in deionised water at 37°C and it was found that the IFSS values decreased over time. Four others silanes were also investigated but APS gave the highest IFSS values.  相似文献   
2.
《Composite Interfaces》2013,20(8):775-788
The incorporation of nanotube-covered fibers in continuous fiber/epoxy composites has been shown to influence the mechanical, electrical, and thermal properties of the composite. Increased interlaminar shear stress, flexural strength and modulus have been reported in such composites over composites containing bare fibers. In this study, the microstructure and interfacial shear strength (ISS) of continuous silicon carbide fiber/epoxy composites with and without nanotubes grown from the SiC fiber surface were investigated with micro-Raman spectroscopy (MRS) and microscopy. The fibers with nanotubes grown from the surface were found to have a reduced ISS compared with the bare fibers. Electron microscopy showed good wetting of epoxy in the nanotube forests, but poor attachment of the nanotube forests to the fibers. These results suggest that the mechanism leading to improvements in bulk composite properties is not due to an improvement in the fiber/matrix ISS.  相似文献   
3.
《Composite Interfaces》2013,20(4):379-409
In composites, debonding at the fiber–matrix interface and matrix cracking due to loading or residual stresses can effect the mechanical properties. Here three different architectures — 3-directional orthogonal, 3-directional 8-harness satin weave and 4-directional in-plane multidirectional composites — are investigated and their effective properties are determined for different volume fractions using unit cell modeling with appropriate periodic boundary conditions. A cohesive zone model (CZM) has been used to simulate the interfacial debonding, and an octahedral shear stress failure criterion is used for the matrix cracking. The debonding and matrix cracking have significant effect on the mechanical properties of the composite. As strain increases, debonding increases, which produces a significant reduction in all the moduli of the composite. In the presence of residual stresses, debonding and resulting deterioration in properties occurs at much lower strains. Debonding accompanied with matrix cracking leads to further deterioration in the properties. The interfacial strength has a significant effect on debonding initiation and mechanical properties in the absence of residual stresses, whereas, in the presence of residual stresses, there is no effect on mechanical properties. A comparison of predicted results with experimental results shows that, while the tensile moduli E 11, E 33and shear modulus G 12 match well, the predicted shear modulus G 13 is much lower.  相似文献   
4.
《Composite Interfaces》2013,20(2-3):95-110
In this study, bio-foam composites are produced using short sisal fiber as the reinforcement and modified castor oil as the matrix, respectively. The foam composites with an average cell size of 200 μm possess properties similar to those of commercial polyurethane foams. The effects of fiber loading, fiber length and foam density on the compressive properties of the foam composites are reported in relation to the interfacial interaction. It is found that the addition of chopped sisal alters cell structure of the foam. Surface pre-treatment of sisal by alkali or silane coupling agent helps to improve the mechanical properties and interfacial adhesion. The exposure of the fibers to the gas cells of the foam reduces the effectiveness of interfacial effect, which is different from the case of conventional bulk composites. As a result, the reinforcing ability of sisal fibers becomes a function of fiber length and so on.  相似文献   
5.
《Composite Interfaces》2013,20(2-3):281-299
Nowadays, utilisation of biodegradable materials has become necessary in order to maintain global environmental and ecological balance. Fully biodegradable nano 'Green' textile composites have been prepared from cellulose nanofibers reinforced corn starch resin and ramie fabric. Nanofibers having dimensions of approximately 1 μm long and 20–30 nm in diameter are used in the study. The nanofibers were incorporated in corn starch resin via ball mill mixing using ceramic balls. Textile composites were fabricated by pasting the reinforced resin onto the ramie fabric and by hot compression molding technique. Interactions at the fiber–matrix interface and the compatibility between cellulose and corn starch resin molecules will affect the properties of the system. The well dispersed cellulose nanofibers contribute higher interfacial area and good fiber networking within the matrix resin. This will lead to better barrier properties. Sorption characteristics of water, oil and diesel in the textile composites were analysed and the influence of nano fibers and macro fibers on the transport phenomena was investigated. The kinetics of sorption-diffusion process was investigated. Kinetic parameters such as n, k, diffusion coefficient, permeability, solubility parameter, % swelling index, etc., were analysed. The presence of cellulose nanofibers influences the sorption mechanism. The water sorption mechanism in the nanocomposites was found to exhibit slight deviation from Fickian mode. Structure–property relationships of the nanocomposites were evaluated.  相似文献   
6.
《Composite Interfaces》2013,20(2-3):65-84
Reinforcing of polylactide (PLA) with fillers can be an interesting solution to reduce its global price and to improve specific properties. Starting from calcium sulfate (gypsum) as by-product of the lactic acid fermentation process, novel high performance composites have been produced by melt-blending PLA and this filler after a previous specific dehydration performed at 500°C for min. 1 h. Due to PLA sensitivity towards hydrolysis, it has first been demonstrated that formation of β-anhydrite II (AII) by adequate thermal treatment of calcium sulfate hemihydrate is a prerequisite. Then, the modification of filler interfacial properties with different coating agents such as stearic acid (SA) and stearate salts has been considered. The effect of surface treatment on molecular, thermal and mechanical properties has been examined together with the morphology of the resulting composites. To take advantage of the improved lubricity and better wetting characteristics, the filler was coated by up to 2% (by weight) SA. The coating of the filler leads to PLA–AII composites that surprisingly exhibit thermal stability, cold crystallization and enhanced impact properties. Such remarkable performances can be accounted for by the good filler dispersion as evidenced by SEM–BSE imaging of fractured surfaces. As far as tensile proprieties are concerned, notable utilization of uncoated filler or filler coated by stearate salts leads to PLA–AII composites characterized by higher tensile strength and Young's modulus values. The study represents a new approach in formulating new melt-processable grades with improved characteristic features by using PLA as polymer matrix.  相似文献   
7.
《Composite Interfaces》2013,20(7-9):841-850
Brazil has a well established ethanol production program based on sugarcane. Sugarcane bagasse and straw are the main by-products that may be used as reinforcement in natural fiber composites. Current work evaluated the influence of fiber insertion within a polypropylene (PP) matrix by tensile, TGA and DSC measurements. Thus, the mechanical properties, weight loss, degradation, melting and crystallization temperatures, heat of melting and crystallization and percentage of crystallinity were attained. Fiber insertion in the matrix improved the tensile modulus and changed the thermal stability of composites (intermediary between neat fibers and PP). The incorporation of natural fibers in PP promoted also apparent T c and ΔH c increases. As a conclusion, the fibers added to polypropylene increased the nucleating ability, accelerating the crystallization process, improving the mechanical properties and consequently the fiber/matrix interaction.  相似文献   
8.
《Composite Interfaces》2013,20(2-3):105-129
Interfacial shear strength (IFSS) of environmentally friendly natural fiber reinforced polymer composites plays a very important role in controlling their overall mechanical performance. The IFSS of various Ramie and Kenaf fiber/epoxy composites was evaluated using the combination of micromechanical test and nondestructive acoustic emission (AE) to find the optimal conditions for desirable final performance. Dynamic contact angle was measured for Ramie and Kenaf fibers and correlated the wettability properties with interfacial adhesion. Mechanical properties of Ramie and Kenaf fibers were investigated using single-fiber tensile test and analyzed statistically by both unimodal and bimodal Weibull distributions. The effect of clamping on the real elongation for both Ramie and Kenaf fibers was evaluated as well. Two different microfailure modes, axial dedonding and fibril fracture, coming from fiber bundles and single fiber composites (SFC) were observed under tension and compression. They were evaluated optically and also determined by AE and their FFT analysis nondestructively.  相似文献   
9.
《Composite Interfaces》2013,20(7-9):647-668
This paper aims at introducing a new natural composite used as soil stabilizer with particular application in geotechnical engineering. The fibers introduced in the present study could be used as effective soil reinforcement. This research proves the feasibility of the use of modified jute/polypropylene in lime and cement composites and studies their effects on the tensile and compressive strength of the matrix. In general, the optimal mechanical performance of natural composites and durability depends on the optimization of the interfacial bond between natural fiber and matrix. Since the fibers and matrices are chemically different, strong adhesion at their interfaces is needed for an effective transfer of stress and bond distribution throughout an interface. In this paper a theoretical approach for the identification of elastic modulus in composite interfaces is proposed in detail with a reasonable error. The theoretical approach is based on the method using a sum of least squares criterion. The approach is applied through optimization techniques, using analytical sensitivities and correlating adhesion with Young's modulus. The validity and potentiality of the proposed technique is discussed and the results demonstrated the versatility, accuracy, and efficiency of the presented approach. The applied method also appears to be a simple way of predicting the modulus of elasticity in composite interfaces. This leads to a discussion of the most promising stabilization methods for soil reinforcement and the outlook for the future.  相似文献   
10.
《Composite Interfaces》2013,20(4-6):391-401
Isora fibre-reinforced natural rubber (NR) composites were cured at 80, 100, 120 and 150°C using a low temperature curing accelerator system. Composites were also prepared using a conventional accelerator system and cured at 150°C. The swelling behavior of these composites at varying fibre loadings was studied in toluene and hexane. Results show that the uptake of solvent and volume fraction of rubber due to swelling was lower for the low temperature cured vulcanizates which is an indication of the better fibre/rubber adhesion. The uptake of aromatic solvent was higher than that of aliphatic solvent, for all the composites. As the fibre content increased, the solvent uptake decreased, due to the superior solvent resistance of the fibre and good fibre–rubber interactions. The bonding agent improved the swelling resistance of the composites due to the strong interfacial adhesion. Due to the improved adhesion between the fibre and rubber, the ratio of the change in volume fraction of rubber due to swelling to the volume fraction of rubber in the dry sample (Vτ ) was found to decrease in the presence of bonding agent. At a fixed fibre loading, the alkali treated fibre composite showed a lower percentage swelling than untreated one for both systems showing superior rubber–fibre interactions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号