首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   1篇
物理学   6篇
  2020年   1篇
  2005年   1篇
  2003年   1篇
  1999年   2篇
  1997年   1篇
排序方式: 共有6条查询结果,搜索用时 15 毫秒
1
1.
A new Planckian type distribution for cosmologies with photon creation is derived using thermodynamics and semiclassical considerations. This spectrum is preserved during the evolution of the universe and compatible with the present spectral shape of the cosmic microwave background radiation (CMBR). Accordingly, the widely spread feeling that cosmologies with continuous photon creation are definitely ruled out by the COBE limits on deviation of the CMBR spectrum from blackbody shape should be reconsidered. It is argued that a crucial test for this kind of cosmologies is provided by measurements of the CMBR temperature at high redshifts. For a given redshift z greater than zero, the temperature is smaller than the one predicted by the standard FRW model.  相似文献   
2.
Shiv K Sethi 《Pramana》1999,53(6):951-961
The theory of generation of CMBR temperature and polarization fluctuations is briefly reviewed. Also discussed is the present status of observations and the nature of future surveys.  相似文献   
3.
T R Seshadri 《Pramana》1999,53(6):963-969
In re-ionized models, the measurement of polarization of CMBR can be a good criterion to narrow down the parameter space for cosmological models. A Vishniac-type effect in second order polarization over arc minute scales has been calculated. It has been shown that while the effect is very small (∼10−2 μK) for CDM models, it can be significant (∼0.3μK) for some isocurvature models.  相似文献   
4.
This paper shows that a simple convolution integral expression based on the mean value of the isotropic frequency distribution corresponding to photon scattering off electrons leads to useful analytical expressions describing the thermal Sunyaev–Zeldovich effect. The approach, to first order in the Compton parameter is able to reproduce the Kompaneets equation describing the effect. Second order effects in the parameter z = kT e mc 2 induce a slight increase in the crossover frequency.  相似文献   
5.
We investigate observational constraints on the running vacuum model (RVM) of \begin{document}$\Lambda=3\nu (H^{2}+K/a^2)+c_0$\end{document} in a spatially curved universe, where \begin{document}$\nu$\end{document} is the model parameter, \begin{document}$K$\end{document} corresponds to the spatial curvature constant, \begin{document}$a$\end{document} represents the scalar factor, and \begin{document}$c_{0}$\end{document} is a constant defined by the boundary conditions. We study the CMB power spectra with several sets of \begin{document}$\nu$\end{document} and \begin{document}$K$\end{document} in the RVM. By fitting the cosmological data, we find that the best fitted \begin{document}$\chi^2$\end{document} value for RVM is slightly smaller than that of \begin{document}$\Lambda$\end{document}CDM in the non-flat universe, along with the constraints of \begin{document}$\nu\leqslant O(10^{-4})$\end{document} (68% C.L.) and \begin{document}$|\Omega_K=-K/(aH)^2|\leqslant O(10^{-2})$\end{document} (95% C.L.). In particular, our results favor the open universe in both \begin{document}$\Lambda$\end{document}CDM and RVM. In addition, we show that the cosmological constraints of \begin{document}$\Sigma m_{\nu}=0.256^{+0.224}_{-0.234}$\end{document} (RVM) and \begin{document}$\Sigma m_{\nu}=0.257^{+0.219}_{-0.234}$\end{document} (\begin{document}$\Lambda$\end{document}CDM) at 95% C.L. for the neutrino mass sum are relaxed in both models in the spatially curved universe.  相似文献   
6.
T. Padmanabhan 《Physics Reports》2003,380(5-6):235-320
Recent cosmological observations suggest the existence of a positive cosmological constant Λ with the magnitude Λ(G/c3)≈10−123. This review discusses several aspects of the cosmological constant both from the cosmological (Sections 1–6) and field theoretical (Sections 7–11) perspectives. After a brief introduction to the key issues related to cosmological constant and a historical overview, a summary of the kinematics and dynamics of the standard Friedmann model of the universe is provided. The observational evidence for cosmological constant, especially from the supernova results, and the constraints from the age of the universe, structure formation, Cosmic Microwave Background Radiation (CMBR) anisotropies and a few others are described in detail, followed by a discussion of the theoretical models (quintessence, tachyonic scalar field, …) from different perspectives. The latter part of the review (Sections 7–11) concentrates on more conceptual and fundamental aspects of the cosmological constant like some alternative interpretations of the cosmological constant, relaxation mechanisms to reduce the cosmological constant to the currently observed value, the geometrical structure of the de Sitter spacetime, thermodynamics of the de Sitter universe and the role of string theory in the cosmological constant problem.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号