首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   90篇
  免费   1篇
  国内免费   7篇
化学   32篇
力学   39篇
物理学   27篇
  2024年   1篇
  2023年   2篇
  2022年   2篇
  2021年   5篇
  2020年   1篇
  2019年   2篇
  2017年   2篇
  2016年   1篇
  2015年   2篇
  2014年   2篇
  2013年   3篇
  2012年   3篇
  2011年   10篇
  2010年   8篇
  2009年   5篇
  2008年   5篇
  2007年   7篇
  2006年   5篇
  2005年   7篇
  2004年   5篇
  2003年   2篇
  2002年   4篇
  2001年   3篇
  2000年   4篇
  1997年   1篇
  1996年   3篇
  1994年   2篇
  1981年   1篇
排序方式: 共有98条查询结果,搜索用时 46 毫秒
1.
An experimental study was performed to understand the nucleate boiling heat transfer of water–CuO nanoparticles suspension (nanofluids) at different operating pressures and different nanoparticle mass concentrations. The experimental apparatus is a miniature flat heat pipe (MFHP) with micro-grooved heat transfer surface of its evaporator. The experimental results indicate that the operating pressure has great influence on the nucleate boiling characteristics in the MFHP evaporator. The heat transfer coefficient and the critical heat flux (CHF) of nanofluids increase greatly with decreasing pressure as compared with those of water. The heat transfer coefficient and the CHF of nanofluids can increase about 25% and 50%, respectively, at atmospheric pressure whereas about 100% and 150%, respectively, at the pressure of 7.4 kPa. Nanoparticle mass concentration also has significant influence on the boiling heat transfer and the CHF of nanofluids. The heat transfer coefficient and the CHF increase slowly with the increase of the nanoparticle mass concentration at low concentration conditions. However, when the nanoparticle mass concentration is over 1.0 wt%, the CHF enhancement is close to a constant number and the heat transfer coefficient deteriorates. There exists an optimum mass concentration for nanofluids which corresponds to the maximum heat transfer enhancement and this optimum mass concentration is 1.0 wt% at all test pressures. The experiment confirmed that the boiling heat transfer characteristics of the MFHP evaporator can evidently be strengthened by using water/CuO nanofluids.  相似文献   
2.
倪良  卢洁 《物理化学学报》1996,12(2):146-151
讨论了沸点升高法测定混和溶剂化热和汽化熵的原理,并用拟静态法测定了乙醇-丙酮,并-四氯化碳和苯,甲苯三组混和溶剂在不同组成下的正常沸点,根据沸点数据求得了混和泶微分汽化热和汽化熵,实验结果表明,二元混和溶剂与理想溶液偏离不大时,其正常汽化熵符合Trouton规则。  相似文献   
3.
Boiling temperature measurements have been made at ambient pressure for saturated ternary solutions of NaCl + KNO3 + H2O, NaNO3 + KNO3 + H2O, and NaCl + Ca(NO3)2 + H2O over the full composition range, along with those of the single salt systems. Boiling temperatures were also measured for the four component NaCl + NaNO3 + KNO3 + H2O and five component NaCl + NaNO3 + KNO3 + Ca(NO3)2 + H2O mixtures, where the solute mole fraction of Ca(NO3)2, x{Ca(NO3)2}, was varied between 0 and 0.25. The maximum boiling temperature found for the NaCl + KNO3 + H2O system is ≈134.9 C; for the NaNO3 + KNO3 + H2O system is ≈165.1 C at x(NaNO3) ≈ 0.46 and x(KNO3) ≈ 0.54; and for the NaCl + Ca(NO3)2 + H2O system is 164.7 ± 0.6 C at x{NaCl} ≈ 0.25 and x{Ca(NO3)2} ≈ 0.75. The NaCl + NaNO3 + KNO3 + Ca(NO3)2 + H2O system forms molten salts below their maximum boiling temperatures and the temperatures corresponding to the cessation of boiling (dry-out temperatures) of these liquid mixtures were determined. These dry-out temperatures range from ≈300 C when x{Ca(NO3)2} = 0 to ≥ 400 C when x{Ca(NO3)2} = 0.20 and 0.25. Mutual deliquescence/efflorescence relative humidity (MDRH/MERH) measurements were also made for the NaNO3 + KNO3 and NaCl + NaNO3 + KNO3 salt mixture from 120 to 180 C at ambient pressure. The NaNO3 + KNO3 salt mixture has a MDRH of 26.4% at 120 C and 20.0% at 150 C. This salt mixture also absorbs water at 180 C, which is higher than expected from the boiling temperature experiments. The NaCl + NaNO3 + KNO3 salt mixture was found to have a MDRH of 25.9% at 120 C and 10.5% at 180 C. The investigated mixture compositions correspond to some of the major mineral assemblages that are predicted to control brine composition due to the deliquescence of salts formed in dust deposited on waste canisters in the proposed nuclear repository at Yucca Mountain, Nevada.  相似文献   
4.
A linear relation between critical temperature and boiling point is proposed for elements belonging to the same group in the periodic table. The validity of the relationship is demonstrated for the alkalies and the groups 16, 17 and 18. From this the critical temperature of tellurium is predicted as 2325?K and that for polonium as 2277?K.  相似文献   
5.
Understanding CHF is of an upmost importance in many industries, especially in the design and operation of boilers, nuclear power plants, cryogenic systems, etc. Due to safety issues related to the nuclear power plants, and the adaptation of CHF as the limiting criterion of power generation, it is important to understand the mechanisms of CHF relevant to nuclear systems operation. Moreover, CHF is expected to occur during transients than steady-state conditions. Therefore, knowledge of transient CHF is of great importance for the safety evaluation of nuclear reactors under transient condition. In this paper, the existing CHF experimental and modeling studies are discussed in order to understand the phenomena leading to CHF. Also, the effect of transient conditions on CHF for nuclear fuels has been evaluated.  相似文献   
6.
Boiling histotripsy is a promising High-Intensity Focused Ultrasound (HIFU) technique that can be used to induce mechanical tissue fractionation at the HIFU focus via cavitation. Two different types of cavitation produced during boiling histotripsy exposure can contribute towards mechanical tissue destruction: (1) a boiling vapour bubble at the HIFU focus and (2) cavitation clouds in between the boiling bubble and the HIFU source. Control of the extent and degree of mechanical damage produced by boiling histotripsy is necessary when treating a solid tumour adjacent to normal tissue or major blood vessels. This is, however, difficult to achieve with boiling histotripsy due to the stochastic formation of the shock scattering-induced inertial cavitation clouds. In the present study, a new histotripsy method termed pressure-modulated shockwave histotripsy is proposed as an alternative to or in addition to boiling histotripsy without inducing the shock scattering effect. The proposed concept is (a) to generate a boiling vapour bubble via localised shockwave heating and (b) subsequently control its extent and lifetime through manipulating peak pressure magnitudes and a HIFU pulse length. To demonstrate the feasibility of the proposed method, bubble dynamics induced at the HIFU focus in an optically transparent liver tissue phantom were investigated using a high speed camera and a passive cavitation detection systems under a single 10, 50 or 100 ms-long 2, 3.5 or 5 MHz pressure-modulated HIFU pulse with varying peak positive and negative pressure amplitudes from 5 to 89 MPa and −3.7 to −14.6 MPa at the focus. Furthermore, a numerical simulation of 2D nonlinear wave propagation with the presence of a boiling bubble at the focus of a HIFU field was conducted by numerically solving the generalised Westervelt equation. The high speed camera experimental results showed that, with the proposed pressure-modulated shockwave histotripsy, boiling bubbles generated by shockwave heating merged together, forming a larger bubble (of the order of a few hundred micron) at the HIFU focus. This coalesced boiling bubble then persisted and maintained within the HIFU focal zone until the end of the exposure (10, 50, or 100 ms). Furthermore, and most importantly, no violent cavitation clouds which typically appear in boiling histotripsy occurred during the proposed histotripsy excitation (i.e. no shock scattering effect). This was likely because that the peak negative pressure magnitude of the backscattered acoustic field by the boiling bubble was below the cavitation cloud intrinsic threshold. The size of the coalesced boiling bubble gradually increased with the peak pressure magnitudes. In addition, with the proposed method, an oval shaped lesion with a length of 0.6 mm and a width of 0.1 mm appeared at the HIFU focus in the tissue phantom, whereas a larger lesion in the form of a tadpole (length: 2.7 mm, width: 0.3 mm) was produced by boiling histotripsy. Taken together, these results suggest that the proposed pressure-modulated shockwave histotripsy could potentially be used to induce a more spatially localised tissue destruction with a desired degree of mechanical damage through controlling the size and lifetime of a boiling bubble without the shock scattering effect.  相似文献   
7.
低温液体流动沸腾数值计算中的相间传热模型   总被引:1,自引:0,他引:1  
采用双流体模型预测了液氮在垂直管内的流动沸腾过程,着重考察和评价了五个常用的相间传热模型对数值计算结果的影响,找出了最优的相间传热模型;同时,研究还发现相间传热模型对流动压降的预测并无明显影响.  相似文献   
8.
To develop a highly stable microchannel heat sink for boiling heat transfer, three types of diverging microchannels (Type 1, Type 2 and Type 3) were designed to experimentally investigate the effect of different distributions of artificial nucleation sites (ANS) on the enhancement of flow boiling heat transfer, in 10 parallel diverging microchannels with a mean hydraulic diameter of 120 μm. Water was used as the working fluid with mass flux, based on the mean cross section area, ranging from 99 to 297 kg/m2 s. The Type-1 system did not contain any ANS; the Type-2 system contained ANS distributed uniformly along the downstream half of the channel; and the Type-3 system contained ANS distributed uniformly along the entire channel. The ANS are laser-etched pits on the bottom wall of the channel and have a mouth diameter of approximately 20-22 μm, as indicted by the heterogeneous nucleation theory. The results of the present study reveal that the presence of ANS for flow boiling in parallel diverging microchannels significantly reduces the wall superheat and enhances the boiling heat transfer performance. The Type-3 system shows the best boiling heat transfer performance.  相似文献   
9.
An experimental study of heat transfer during quenching of a cylindrical stainless steel test specimen has been performed. A subcooled water jet is directed onto the upward facing flat face of the cylinder. The test specimen is heated to an initial temperature slightly above 900 °C and then quenched. The resulting boiling curves and heat transfer distributions are presented for impingement velocities of 2.85 and 6.4 m/s (Re = 7900 and 18,900). High-speed imaging shows that three distinct regions on the quenched surface can be identified: an expanding circular wetted region surrounding the impinging point, annular transition zone just outside the wetting front, and a unwetted region outside this zone. The free-surface of the liquid in the wetted region is smooth in the nucleate and transition boiling regimes. The annular transition zone or the wetting front region outside the wetted region is characterized by a highly disturbed liquid-gas interface, which can be attributed to intense vapor generation. At the outer edge of the transition zone, the liquid is deflected away from the surface. The velocity of the wetting front significantly increases with the jet impact velocity, which indicates that the wetting front position is governed by the ability of the flowing liquid to transport the bubbles radially outwards from the wetted region.  相似文献   
10.
以汽油-空气为介质,在不凝性气体质量含量不超过5%时,对导程为200mm的螺旋扁管管束中的沸腾换热进行了实验研究,分析了沸腾换热系数随两相质量流量的变化规律以及流动压降随空气流量的变化规律。得到了相应条件下,载气汽油在该导程的螺旋扁管管束中的沸腾换热实验关联式。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号