首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18篇
  免费   1篇
  国内免费   2篇
数学   15篇
物理学   6篇
  2022年   1篇
  2021年   1篇
  2016年   2篇
  2015年   3篇
  2014年   2篇
  2013年   2篇
  2012年   3篇
  2011年   1篇
  2008年   2篇
  2007年   3篇
  2006年   1篇
排序方式: 共有21条查询结果,搜索用时 15 毫秒
1.
A novel scheme is proposed for the design of backstepping control for a class of state-feedback nonlinear systems. In the design, the unknown nonlinear functions are approximated by the neural networks (NNs) identification models. The Lyapunov function of every subsystem consists of the tracking error and the estimation errors of NN weight parameters. The adaptive gains are dynamically determined in a structural way instead of keeping them constants, which can guarantee system stability and parameter estimation convergence. When the modeling errors are available, the indirect backstepping control is proposed, which can guarantee the functional approximation error will converge to a rather small neighborhood of the minimax functional approximation error. When the modeling errors are not available, the direct backstepping control is proposed, where only the tracking error is necessary. The simulation results show the effectiveness of the proposed schemes.  相似文献   
2.
李雨珊  吕翎  刘烨  刘硕  闫兵兵  常欢  周佳楠 《物理学报》2013,62(2):20513-020513
利用Backstepping设计进行了复杂网络时空混沌的同步研究.首先将实现两个混沌系统同步的Backstepping设计推广到由m个时空混沌系统构成任意结构的复杂网络的同步研究中.进一步依据稳定性理论确定了网络同步时配置系数和控制增益满足的关系.整个网络实现同步仅需要在网络中的一个节点施加控制输入即可.进一步通过仿真实验验证了同步机理的有效性.  相似文献   
3.
针对高超音速飞行器执行器饱和的问题,在考虑全维运动及系统不确定项的情况下,提出了一种基于执行器误差补偿的非线性反步自适应控制方法,该方法通过引入执行器误差动态补偿机制,使得当控制输入超出其自身幅值限制时,能够立刻恢复到其幅值限制范围内,且引入小波神经网络自适应律和鲁棒项确保闭环系统是最终一致有界稳定,通过仿真验证了所设计方法的有效性。  相似文献   
4.
In this paper, a new simple chaotic system is discussed. Basic dynamical properties of the new attractor are demonstrated in terms of phase portraits, equilibria and stability, Lyapunov exponents, a dissipative system, Poincaré mapping, bifurcation diagram, especially Hopf bifurcation. Next, based on well-known Lyapunov stability theorem, backstepping design is proposed for synchronization of the new chaotic system. At last, numerical studies are provided to illustrate the effectiveness of the presented scheme.  相似文献   
5.
In this study, a new nonlinear and full adaptive backstepping speed tracking control scheme is developed for an uncertain permanent magnet synchronous motor (PMSM). Except for the number of pole pairs, all the other parameters in both PMSM and load dynamics are assumed unknown. Three phase currents and rotor speed are supposed to be measurable and available for feedback in the controller design. By designing virtual control inputs and choosing appropriate Lyapunov functions, the final control and parameter estimation laws are derived. The overall control system possesses global asymptotic stability; all the signals in the closed loop system remain bounded, according to stability analysis results based on Lyapunov stability theory. Further, the proposed controller does not require computation of regression matrices, with the result that take the nonlinearities in quite general. Simulation results clearly exhibit that the controller guarantees tracking of a time varying desired reference speed trajectory under all the uncertainties in both PMSM and load dynamics without singularity and overparameterization. The results also show that all the parameter estimates converge to their true values on account of the fact that reference speed signal chosen to be sufficiently rich ensures persistency of excitation condition. Consequently, the proposed controller ensures strong robustness against all the parameter uncertainties and unknown bounded load torque disturbance in the PMSM drive system. Numerical simulations demonstrate the performance and feasibility of the proposed controller.  相似文献   
6.
This paper aims to address the event-triggered Robin boundary control problem for exponential stabilization of the coupled semilinear reaction–diffusion systems with spatially varying coefficients. The main used method is the backstepping, which allows us to explicitly give the boundary control formulae. More precisely, we first explore the existence and uniqueness of classical solutions for the considered problem. After this, we propose an event-triggered boundary feedback control law to exponentially stabilize the system under consideration with the Zeno phenomenon being excluded. A numerical result is finally included to illustrate the efficiency of our designed controller.  相似文献   
7.
In this paper, an adaptive fuzzy output tracking control approach is proposed for a class of single input and single output (SISO) uncertain pure-feedback switched nonlinear systems under arbitrary switchings. Fuzzy logic systems are used to identify the unknown nonlinear system. Under the framework of the backstepping control design and fuzzy adaptive control, a new adaptive fuzzy output tracking control method is developed. It is proved that the proposed control approach can guarantee that all the signals in the closed-loop system are semi-globally uniformly ultimately bounded (SGUUB) and the tracking error remains an adjustable neighborhood of the origin. A numerical example is provided to illustrate the effectiveness of the proposed approach.  相似文献   
8.
郑兆顺 《数学季刊》2007,22(2):276-281
The adaptive stabilization problem of nonlinear systems are studied. For a class of uncertain nonlinear systems with unknown control direction, we proposed a robust adaptive backstepping scheme withσ-modification by introducing Nussbaum function and Backstep- ping methods, and proved that all the signals of the closed-loop systems are bounded.  相似文献   
9.
江立军  慕东东  范云生  王国峰  赵永生 《应用声学》2016,24(7):133-136, 161
为了实现无人艇的自动航向控制,本文采用Z型和回转实验数据,通过递推最小二乘对无人艇的数学模型进行辨识,然后将模型的仿真实验与实船数据进行对比,验证了模型的正确性和合理性.基于Backstepping方法设计非线性航向控制器,借助Lyapunov 函数证明了闭环系统的稳定性.仿真结果表明系统的实际航向能实时的跟踪设定航向,控制器具有良好的动静态特性和鲁棒性.  相似文献   
10.
A nonlinear system for controlling flutter in an aeroelastic system is proposed. The dynamic model describes the plunge and pitch motion of a wing. Interacting nonlinear forces such as structural and aerodynamic forces cause destabilizing phenomena such as flutter and limit cycle oscillation on the wing. Aeroelastic models have a wing section with only a single trailing-edge control surface for suppressing limit cycle oscillation. When modeling a single control surface, the controller design can achieve trajectory control of either plunge displacement or pitch angle, but not both, and internal dynamics describe the residual motion in closed-loop systems. Internal dynamics of aeroelasticity depend on model parameters such as freestream velocity and spring constant. Since single control surfaces have limited effectiveness, this study used leading- and trailing-edge control surfaces to improve control of limit-cycle oscillation. Moreover, two control surfaces were used to provide sufficient flexibility to shape both the plunge and the pitch responses. In this study, high order sliding mode control (HOSMC) with backstepping design achieved system stability and eliminated limit cycle phenomenon. Compared to the conventional sliding mode control design, the proposed control law not only preserves system robustness, but also avoids chatter phenomenon. Simulation results show that the proposed controller effectively regulate the response to origin in state space even under saturated controller input.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号