首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8061篇
  免费   933篇
  国内免费   391篇
化学   6080篇
晶体学   138篇
力学   802篇
综合类   14篇
数学   645篇
物理学   1706篇
  2024年   16篇
  2023年   51篇
  2022年   128篇
  2021年   161篇
  2020年   325篇
  2019年   201篇
  2018年   161篇
  2017年   225篇
  2016年   328篇
  2015年   319篇
  2014年   351篇
  2013年   545篇
  2012年   558篇
  2011年   435篇
  2010年   408篇
  2009年   538篇
  2008年   567篇
  2007年   613篇
  2006年   515篇
  2005年   399篇
  2004年   414篇
  2003年   336篇
  2002年   281篇
  2001年   199篇
  2000年   188篇
  1999年   219篇
  1998年   181篇
  1997年   123篇
  1996年   92篇
  1995年   105篇
  1994年   62篇
  1993年   61篇
  1992年   47篇
  1991年   38篇
  1990年   25篇
  1989年   27篇
  1988年   20篇
  1987年   15篇
  1986年   15篇
  1985年   13篇
  1984年   23篇
  1983年   4篇
  1982年   13篇
  1981年   6篇
  1980年   4篇
  1979年   10篇
  1978年   5篇
  1977年   6篇
  1976年   3篇
  1970年   2篇
排序方式: 共有9385条查询结果,搜索用时 15 毫秒
1.
2.
Self‐assembly of AB2 and AB3 type low molecular weight poly(aryl ether) dendrons that contain hydrazide units were used to investigate mechanistic aspects of helical structure formation during self‐assembly. The results suggest that there are three important aspects that control helical structure formation in such systems with acyl hydrazide/hydrazone linkage: i) J‐type aggregation, ii) the hydrogen‐bond donor/acceptor ability of the solvent, and iii) the dielectric constant of the solvent. The monomer units self‐assemble to form dimer structures through hydrogen‐bonding and further assembly of the hydrogen‐bonded dimers leads to macroscopic chirality in the present case. Dimer formation was confirmed by NMR spectroscopy and by mass spectrometry. The self‐assembly in the system was driven by hydrogen‐bonding and π–π stacking interactions. The morphology of the aggregates formed was examined by scanning electron microscopy, and the analysis suggests that aprotic solvent systems facilitate helical fibre formation, whereas introduction of protic solvents results in the formation of flat ribbons. This detailed mechanistic study suggests that the self‐assembly follows a nucleation–elongation model to form helical structures, rather than the isodesmic model.  相似文献   
3.
Three‐dimensional (3D) nanometal films serving as current collectors have attracted much interest recently owing to their promising application in high‐performance supercapacitors. In the process of the electrochemical reaction, the 3D structure can provide a short diffusion path for fast ion transport, and the highly conductive nanometal may serve as a backbone for facile electron transfer. In this work, a novel polypyrrole (PPy) shell@3D‐Ni‐core composite is developed to enhance the electrochemical performance of conventional PPy. With the introduction of a Ni metal core, the as‐prepared material exhibits a high specific capacitance (726 F g?1 at a charge/discharge rate of 1 A g?1), good rate capability (a decay of 33 % in Csp with charge/discharge rates increasing from 1 to 20 A g?1), and high cycle stability (only a small decrease of 4.2 % in Csp after 1000 cycles at a scan rate of 100 mV s?1). Furthermore, an aqueous symmetric supercapacitor device is fabricated by using the as‐prepared composite as electrodes; the device demonstrates a high energy density (≈21.2 Wh kg?1) and superior long‐term cycle ability (only 4.4 % and 18.6 % loss in Csp after 2000 and 5000 cycles, respectively).  相似文献   
4.
Supramolecular polyurethane ureas are expected to have superior mechanical properties primarily due to the reversible, noncovalent interactions such as hydrogen bonding interactions. We synthesized polyurethane prepolymers from small molecular weight of poly(tetramethylene ether)glycol and isophorone diisocyanates, which were end capped with propylamine to synthesize polyurethane ureas with high contents of urea and urethane groups for hydrogen‐bonding formations to facilitate self‐healing. The effects of polyurethane urea molecular weight (3000 ≤ Mn ≤ 9000), crosslinking, and cutting direction were studied in terms of thermal, mechanical, and morphological properties with an emphasis on the self‐healing efficiency. It was found that the thermal self‐healability was more pronounced as the molecular weight of polyurethane urea decreased, showing a maximum of more than 96% with 3000 Mn when the sample was cut along the stretch direction. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 468–474  相似文献   
5.
The development of synthetic routes which lead to five new diisocyanide monomers with one or two phenolic groups is described. Their polymerization behavior is studied with Pd‐ and Ni‐based initiators, as well as under microwave irradiation. The polymerizability is mainly dominated by steric effects as is concluded from experiments using different protecting groups. Chiroptical properties of these new polymers are studied by CD‐spectroscopy. After deprotection, helically chiral poly(quinoxalin‐2,3‐diyl)s are obtained which display a Brønsted function attached to a stereolabile biaryl axis whose configuration should be influenced by the chiral polymer backbone. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 1320–1329  相似文献   
6.
7.
1,3-Dithiol-2-ylidene derivatives containing bis(ethynylpyridine) units were synthesized using a Pd-catalyzed reaction of the corresponding dibromide. X-Ray crystal analysis revealed unique crystal structures depending on the aromatic groups. The absorption spectra and redox properties indicated intramolecular charge-transfer interactions between the 1,3-dithiole unit and the pyridyl parts.  相似文献   
8.
We show that if G is a definably compact, definably connected definable group defined in an arbitrary o‐minimal structure, then G is divisible. Furthermore, if G is defined in an o‐minimal expansion of a field, k ∈ ? and pk : GG is the definable map given by pk (x ) = xk for all xG , then we have |(pk )–1(x )| ≥ kr for all xG , where r > 0 is the maximal dimension of abelian definable subgroups of G . (© 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   
9.
As‐cast films of poly(2,5‐benzimidazole) exhibit uniplanar orientation in which the planes of the aromatic rings lie parallel to the film surface. Upon doping with phosphoric acid, the original crystalline order is lost, but the doped film can be stretched to produce films with uniaxial orientation. After thermal annealing at 540 °C, nine Bragg reflections are resolved in the fiber diagram, and these are indexed by an orthorhombic unit cell with the dimensions a = 18.1 Å, b = 3.5 Å, and c = 11.4 Å, containing four monomer units of two chains. The absence of odd‐order 00l reflections points to a 21 chain conformation, which is probably planar so that the aromatic units can be stacked along the b axis. The water and phosphoric acid contents of the crystalline structure cannot be determined exactly because of the presence of extensive amorphous regions that probably have different solvation. The best agreement between the observed and calculated intensities is for an idealized structure containing two phosphoric acids and two water molecules per unit cell. However, the phosphoric acid is probably present mainly in the form of pyrophosphoric acid and its higher oligomers. In addition, the X‐ray data are consistent with a more disordered structure containing chains with random (up and down) polarity and a lack of c‐axis registry. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 2576–2585, 2004  相似文献   
10.
An overview of the use of non-protein amino acids in the design of conformationally well-defined peptides, based on work from the author’s laboratory, is discussed. The crystal structures of several designed oligopeptides illustrate the useα-aminoisobutyric acid (Aib) in the construction of helices, D-amino acids in the design of helix termination segments andDPro-Xxx segments for nucleating ofβ-hairpin structures.β- andγ-amino acid residues have been used to expand the range of designed polypeptide structures. Dedicated to Professor C N R Rao on his 70th birthday  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号