首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   3篇
物理学   10篇
  2018年   1篇
  2017年   1篇
  2014年   1篇
  2013年   2篇
  2011年   1篇
  2008年   2篇
  2007年   2篇
排序方式: 共有10条查询结果,搜索用时 15 毫秒
1
1.
This paper studies the fabrication and characterization of 80 nm zinc oxide anti-reflective coating (ARC) on flexible 1.3 μm thin film microcrystalline silicon (μc-Si) solar cell. High resolution X-ray diffraction (HR-XRD) shows a c-axis oriented ZnO (0 0 2) peak (hexagonal crystal structure) at 34.3° with full width at half maximum (FWHM) of 0.3936°. Atomic force microscope (AFM) measures high surface roughness root-mean-square (RMS) of the layer (50.76 nm) which suggests scattering of the incident light at the front surface of the solar cell. UV–vis spectrophotometer illustrates that ZnO ARC has optical transmittance of more than 80% in the visible and infra-red (IR) regions and corresponds to band gap (Eg) of 3.3 eV as derived from Tauc equation. Inclusion of ZnO ARC successfully suppresses surface reflectance from the cell to 2% (at 600 nm) due to refractive index grading between the Si and the ZnO besides quarter-wavelength (λ/4) destructive interference effect. The reduced reflectance and effective scattering effect of the incident light at the front side of the cell are believed to be the reasons why short-circuit current (Isc) and efficiency (η) of the cell improve.  相似文献   
2.
3.
 采用溶胶-凝胶法,以醋酸镁和氟化氢为原料,以甲醇为溶剂制备了MgF2溶胶,利用浸渍提拉法在洁净石英基片上镀膜,考察了反应温度对溶胶微结构、薄膜结构和性能的影响。样品采用激光动态光散射、透射电镜、X射线粉体衍射仪、紫外-可见光谱仪、原子力显微镜进行表征。结果表明:通过该方法制备的表面平整的低折射率MgF2薄膜,在紫外区具有很好的增透性能,同时在紫外波长355 nm激光的辐照下(脉宽6 ns),薄膜具有较高的抗激光损伤性能,激光损伤阈值达10.85 J·cm-2。  相似文献   
4.
 根据惯性约束聚变系统技术要求,提出了镀膜减反方案,以解决现有光栅由于元件表面反射影响零级透过率的问题。使用严格耦合波理论分析了镀sol-gel减反膜的取样光栅特性,详细地分析了仿形膜和平面膜的减反情况和取样效率的变化。结果发现,镀平面膜是一种可行的技术方案,光栅表面反射几乎完全消除,表明可以通过取样光栅镀膜减反来达到提高透射率的目的;裸光栅的深度为12 nm时,平面减反膜厚为60 nm,即光学厚度为等效1/4波长:72 nm。此时的透射率为99.8%,取样效率为0.241‰。  相似文献   
5.
GaN nano flowers were grown on various commercial substrates by a simple catalyst free chemical vapor deposition (CVD) technique. The size and shape of the nanostructures were characterized by scanning electron microscopy (SEM). The influence of the substrate, growth temperature, and ammonia flow rate on the size and shape of the nano-flowers were investigated along with their anti-reflective and hydrophobic properties. The normal incident reflectivity measurements carried out on the nano structures showed very low (5%) reflectivity. The wettability of the surface investigated by the static contact angle of water droplet revealed their hydrophobic nature with a large contact angle of about 145°. These results on catalysis-free nanostructures would be useful for anti-reflective surfaces/coatings in solar cell applications.  相似文献   
6.
Interactions between a bottom anti-reflective coating (BARC) and a photoresist can critically impact lithographic patterns. For example, a lithographic pattern can shrink or spread near a BARC interface, a process called undercutting or footing respectively, due to incompatibility between the two materials. Experiments were conducted on two industrial BARC coatings in an effort to determine the impact of BARC surface chemistry on the footing and undercutting phenomena. The BARC coatings were characterized by near edge X-ray absorption fine structure (NEXAFS), contact angle measurements, and neutron and X-ray reflectivity. Contact angle measurement using a variety of fluids showed that the fluid contact angles were independent of the type of BARC coating or the BARC processing temperature. NEXAFS measurements showed that the surface chemistry of each BARC was also independent of the processing temperature. These results suggest that acid-base interactions at the BARC-resist interface are not the cause of the footing-undercutting phenomena encountered in lithographic patterns.  相似文献   
7.
Results of the studies of optical properties of anti-reflective glasses with various texturization patterns, which were used as a coating for crystalline silicon solar cells, are presented. It was found that glass samples sorted by their optical transmittance demonstrated the same order as when sorted by their solar-cell short-circuit current enhancement parameter. The value of the latter depended on the parameters of texturization, such as the surface density of inclusions and their profile, and the depth of etching pits. A 2% relative increase of the solar cell efficiency was obtained for the best glass sample for null degree angle of incidence, proving enhanced light trapping properties of the studied glass.  相似文献   
8.
In order to improve the performance of optical and optoelectronic devices, reduced light reflection at wide incidence angles, broadband wavelength, and polarization-insensitivity are crucial. Inspired by nature, surfaces of sub-wavelength structures have been developed as effective anti-reflective (AR) surfaces, which present promising broadband and quasi-omnidirectional AR properties. This review summarizes fabrication methods and applications of sub-wavelength anti-reflective surfaces, including various conventional techniques. The applications of sub-wavelength structure-based AR surfaces in solar cells, light emitting diodes (LEDs), and other applications are highlighted.  相似文献   
9.
高抗激光损伤阈值介孔SiO2 减反射膜   总被引:1,自引:1,他引:0       下载免费PDF全文
 用P123作模板剂,通过正硅酸乙酯的水解缩聚和溶剂蒸发自组装过程在K9玻璃上制备介孔SiO2膜。应用FT-IR,XRD,N2 吸附-脱附,AFM和UV-Vis表征手段研究了薄膜的介孔结构和光学性能,并使用“R-on-1”模式,以Nd:YAG脉冲激光(9.2 ns, 1 064 nm)测试了薄膜的激光损伤阈值。结果表明:所镀制单层介孔SiO2膜具有规整的2D p6 mm长周期结构,为SBA-15型,膜层表面比较平整(均方根粗糙度为2.923 nm),在1 064 nm处的透过率为99.5%, 换算为激光脉宽为1 ns时,膜层的激光损伤阈值为21.6 J/cm2,显示出了较好的减反性能和抗激光损伤性能。  相似文献   
10.
We report the fabrication of the anti-reflective micro/nano-structure on absorbing layer of GaAs solar cell surface using an efficient approach based on one-step femtosecond laser irradiation. Morphology of the microstructures and reflectance of the cell irradiated are characterized with SEM and spectrometer to analyze the influence of laser processing parameters on the change of microstructures induced and the reflectance. It has been found that the rectangle grating micro/nano-structure with a period of 700 nm and width of 600 nm is obtained neatly with laser pulse energy of 30.5 μJ(pulse duration is 130 fs, center wavelength is 800 nm, scanning speed is 2.2 mm/s and spot diameter is 22 µm). Reflectance has been suppressed to 23.6% with rectangle structure from 33% of planar cell. In addition, simulation using a finite-difference-time domain(FDTD) method results show that the rectangle grating micro/nano-structure can effectively suppress the reflection within large wavelength ranges.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号