首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   5篇
力学   2篇
数学   3篇
物理学   6篇
  2018年   3篇
  2017年   2篇
  2016年   1篇
  2015年   1篇
  2012年   1篇
  2007年   1篇
  2005年   1篇
  2004年   1篇
排序方式: 共有11条查询结果,搜索用时 15 毫秒
1.
用直接数值模拟的方法研究平板二维边界层对自由流中涡扰动的感受性.在自由流涡扰动与壁面凸起物的相互作用下,在边界层内找到了激发出来的Tollmein-Schlichting(T-S)波,证实了感受性现象及其中波长转变机制的存在.数值模拟得到的T-S波幅值与自由流扰动幅值、凸起高度及矩形凸起物长度的关系,与实验测量所得一致.则由此确定的感受性线性关系式的适用范围亦与实验所得相符.  相似文献   
2.
边界层流中当地感受性过程的数值研究   总被引:1,自引:1,他引:0  
边界层流中当地感受性问题的研究对层流向湍流转捩过程的预测与控制起着非常关键的作用,尤其是对边界层内诱导产生三维Tollmien-Schlichting(T-S)波成因过程的探讨具有更加重要的理论意义.采用高精度、高分辨率变间距的紧致有限差分方法,直接数值模拟了在自由来流湍流与二维壁面局部粗糙相互作用下边界层内的当地感受性问题.数值计算发现,在自由来流湍流与二维壁面局部粗糙作用下,边界层内诱导形成的当地感受性过程是真实存在的;且被激发的一组三维T-S波波包沿流向发展的过程中流向涡结构将逐渐形成,其强度将越演越烈.数值结果还显示,边界层内被诱导产生当地感受性过程的波长转换机制仅使流向波数发生改变,而展向波数保持不变;以及自由来流湍流运动方向的改变将决定三维T-S波波包的传播方向,但其传播速度的大小都近似为无穷远来流速度的1/3.另外,还建立了自由来流湍流的强度和运动方向以及二维壁面局部粗糙的长度和高度与边界层内的当地感受性问题之间的关系等.这一课题的深入研究,将在进一步理解和认识层流向湍流转捩的理论机制,以及湍流的形成机理等方面均起到十分重要的作用.  相似文献   
3.
可压缩横流失稳及其控制   总被引:2,自引:0,他引:2  
徐国亮  符松 《力学进展》2012,42(3):262-273
边界层流动转捩的预测与控制一直是流体力学研究中的一个重要问题. 三维边界层流动工程中十分常见, 而横流失稳是导致三维边界层流动转捩的主要原因. 本文综述了近些年来三维边界层失稳和转捩方面的研究概况. 从机理上讨论了横流扰动的感受性、首次失稳、二次失稳和转捩控制等方面的研究进展. 在数值计算方面, 简要概述了线性稳定性理论、非线性稳定性理论和直接数值模拟方法在横流失稳和转捩方面的应用.本文对横流失稳研究当前存在的问题进行了讨论, 对今后研究的发展趋势作了相应展望.  相似文献   
4.
沈露予  陆昌根 《物理学报》2018,67(18):184703-184703
边界层感受性问题是层流向湍流转捩的初始阶段,是实现边界层转捩预测和控制的关键环节.目前已有的研究成果显示,在声波扰动或涡波扰动作用下前缘曲率变化对边界层感受性机制有着显著的影响.本文采用直接数值模拟方法,研究了在自由来流湍流作用下具有不同椭圆形前缘平板边界层感受性问题,揭示椭圆形前缘曲率变化对平板边界层内被激发出Tollmien-Schlichting (T-S)波波包的感受性机制以及波包向前传播群速度的影响;通过快速傅里叶分析方法从波包中提取获得了不同频率的T-S波,详细分析了前缘曲率变化对不同频率的T-S波的幅值、色散关系、增长率、相速度以及形状函数的作用;确定了前缘曲率在平板边界层内激发T-S波的感受性过程中所占据的地位.通过上述研究能够进一步认识和理解边界层感受性机制,从而丰富和完善了流动稳定性理论.  相似文献   
5.
高军  李佳 《力学学报》2018,50(6):1368-1378
在高超声速边界层中,第一模态和第二模态是与转捩有关的两个主要不稳定模态.除了不稳定模态,还存在一类稳定模态,其相速度在前缘接近快声波的相速度称为快模态.在感受性过程中,这类模态对激发边界层中不稳定模态起着很重要的作用.前缘感受性理论解释了边界层外扰动激发边界层中第一模态波的机理.针对高超声速平板边界层,利用相似性解剖面作为基本流,采用线性稳定性理论和直接数值模拟的方法研究了快模态和慢模态的稳定性行为.研究发现模态转化的位置与马赫数有关.根据线性稳定性理论的结果定义了临界频率.当扰动频率高于临界频率,第一模态与第二模态同支;而当扰动频率低于临界频率,第一模态与第二模态的共轭模态同支.借助稳定性方程的伴随方程分析了直接数值模拟的结果.直接数值模拟结果表明不论上游是快模态还是慢模态,当它们经过第二模态的不稳定区,它们都会演化成第二模态. 这可用模态在非平行流中传播的特征来解释.   相似文献   
6.
壁面局部吹吸边界层感受性的数值研究   总被引:1,自引:0,他引:1       下载免费PDF全文
陆昌根  沈露予 《物理学报》2015,64(22):224702-224702
目前理论、实验以及数值模拟主要研究自由来流中的小扰动与壁面局部粗糙相互作用激发边界层感受性问题. 但是, 针对自由来流湍流与壁面局部吹吸相互作用诱导边界层感受性的相关报道甚少. 本文采用直接数值模拟和快速傅里叶变换的方法, 数值研究了二维平板壁面具有局部吹吸的边界层感受性问题. 结果发现, 在二维边界层内能找到一组被激发产生的Tollmien-Schlichting(T-S)波波包的包络序列以及从波包中能够分离出一组稳定的、中性的和不稳定的T-S波, 证明了二维边界层内感受性现象的存在性. 经数值计算获得了T-S波波包传播的群速度; 并建立了自由来流湍流强度、壁面局部吹吸强度和长度与二维边界层感受性之间的关系, 获得了与Dietz感受性实验相类似的结论. 另外, 还发现在自由来流湍流与壁面局部吹、吸相互作用下能诱导二维边界层内产生相位相反的T-S波. 依据这一理论机理来优化设计局部吹吸装置, 不但能促使层流向湍流转捩的提前, 也可以延迟转捩过程的发生, 达到控制湍流运动的目的.  相似文献   
7.
为正确模拟高超声速绕流中,来流小扰动与弓形激波之间的干扰对流动特征的影响,将弓形激波作为动边界,利用非定常特征关系处理激波处的边界条件.应用五阶精度迎风紧致格式和六阶精度的对称格式与三阶精度的R-K方法相结合,建立高精度非定常激波装配方法.采用该方法数值模拟钝锥高超声速定常流场和二维抛物外形高超声速边界层流动的感受性问题,数值模拟来流小扰动与弓形激波干扰激波后非定常扰动流场,研究扰动波进入边界层产生边界层不稳定波的特征.  相似文献   
8.
采用渐近分析方法,建立了在周期压力驱动下,完全发展的圆管Poiseuille流当管壁存在局部不规则几何形状时的感受性问题模型.通过特征函数的双正交系统,应用Chebyshev配点法进行数值求解.通过算例计算,获得周期压力和矩形突起激发起的流体系统中的各种空间发展模态以及相应的感受性系数.从计算和分析可以知道,在流场的不同发展阶段不同的模态起着主导作用,这与在试验中观察到的扰动流场在不同位置的特性是一致的.  相似文献   
9.
三维边界层内诱导横流失稳模态的感受性机理   总被引:1,自引:0,他引:1       下载免费PDF全文
陆昌根  朱晓清  沈露予 《物理学报》2017,66(20):204702-204702
边界层感受性问题是层流向湍流转捩的初始阶段,在转捩过程中起关键性作用,尤其是三维边界层流动.因此,研究三维边界层感受性问题对进一步理解层流向湍流转捩机理以及湍流成因具有重要的理论意义.采用数值方法研究自由来流湍流与三维壁面局部粗糙相互作用下三维边界层的感受性问题,确定是否能在三维边界层内寻找一种新的横流失稳模态;确定在何种条件下三维边界层内能诱导出定常、非定常的横流失稳模态;探索自由来流湍流的强度、展向波数和法向波数以及三维壁面局部粗糙的大小和结构类型等因素在自由来流湍流与三维壁面局部粗糙作用下三维边界层内被激发出的感受性过程中有何影响,并确定何种横流失稳模态在三维边界层感受性过程中占据何种地位.对自由来流湍流与三维壁面局部粗糙作用激发三维边界层内感受性问题的深入研究,将有助于完善流动稳定性与湍流理论,为层流向湍流转捩过程的预测与控制提供合理的理论依据.  相似文献   
10.
沈露予  陆昌根 《物理学报》2017,66(1):14703-014703
层流向湍流转捩的预测与控制一直是研究的前沿热点问题之一,其中感受性阶段是转捩过程中的初始阶段,它决定着湍流产生或形成的物理过程.但是有关三维边界层内感受性问题的数值和理论研究都比较少;实际工程问题中大部分转捩过程都是发生在三维边界层流中,所以研究三维边界层中的感受性问题显得尤为重要.本文以典型的后掠角45?无限长平板为例,数值研究了在三维壁面局部粗糙作用下的三维边界层感受性问题,探讨了三维边界层感受性问题与三维壁面局部粗糙长、宽和高之间的关系;然后,考虑在后掠平板上设计不同的三维壁面局部粗糙的分布状态、几何形状、距离后掠平板前缘的位置以及流向和展向设计多个三维壁面局部粗糙对三维边界层感受性问题有何影响;最后,讨论两两三维壁面局部粗糙中心点之间的距离以及后掠角的改变对三维边界层感受性的物理过程将会发生何种影响等.这一问题的深入研究将为三维边界层流中层流向湍流转捩过程的认识和理解提供理论依据.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号